TRABAJO PROFESIONAL

COMO REQUISITO PARA OBTENER EL TÍTULO DE:

INGENIERO BIOQUÍMICO

QUE PRESENTA:

Alan Francis Vera Hidalgo

CON EL TEMA:

“EFECTO DE LA VERMICOMPOSTA EN EL CRECIMIENTO Y CALIDAD DEL FRUTO DEL CULTIVO DEL MELON (Cucumis melo L.) CV. Cantaloupe.”

MEDIANTE:

OPCIÓN I

(TÉSIS PROFESIONAL)

ASESOR:

DR. FEDERICO A. GUTIERREZ MICELI

REVISORES:

ING. MARGARITA MARCELIN MADRIGAL

DR. MIGUEL ABUD ARCHILA

TUXTLA GUTIÉRREZ, CHIAPAS

OCTUBRE 2014.
RESUMEN.

La producción de hortalizas en México se ha mantenido como una industria competitiva. La superficie nacional dedicada a estos cultivos asciende a más de 20 millones de hectáreas, donde el melón (Cucumis melo L.) ocupa el 9.7 %. La presente investigación fue realizada con la finalidad de comparar el cultivo de melón convencional con el cultivo orgánico. El estudio sobre parámetros de crecimiento y rendimiento se llevó a cabo en el invernadero del Instituto Tecnológico de Tuxtla Gutiérrez, donde se evaluaron la a) longitud de la planta, b) número de hojas, c) número de flores, d) número de frutos, y el estudio sobre parámetros de calidad e) diámetro del fruto, f) peso, g) dureza, h) °Brix e i) pH. Se utilizó la variedad de melón cantaloup. Las plantas cultivadas con vermicomposta desarrollaron un número de hojas promedio de 29.28 y de 22.76 con el fertilizante químico, las plantas cultivadas con vermicomposta alcanzaron una longitud promedio de 39.94 cm y de 30.14 cm las cultivadas con fertilizante químico. El número de flores en promedio para las plantas cultivadas con vermicomposta fue de 14.46 y de 11.4 para las cultivadas con fertilizante químico, el número de frutos promedio por planta cultivada con vermicomposta fue de 1.72 y de 1.22 para las cultivadas con fertilizante químico. En las variables de calidad del fruto no hubo diferencia estadística significativa (p<0.05), entre los cultivados con vermicomposta y los cultivados con fertilizante químico. Podemos concluir que las plantas cultivadas con vermicomposta presentan mayor crecimiento y rendimiento que las cultivadas con fertilizante químico, sin embargo en ambos tratamientos el fruto de la planta de melón cumple con los valores mínimos que se fijan en las normas de comercialización.
ÍNDICE.

I. INTRODUCCIÓN ... 1

II. JUSTIFICACIÓN .. 3

III. OBJETIVOS .. 3
 III.1. GENERAL .. 3
 III.2. ESPECÍFICOS .. 3

IV. PLANTEAMIENTO DEL PROBLEMA .. 4

V. FUNDAMENTO TEÓRICO .. 5
 V.1. ORIGEN .. 5
 V.2. DENOMINACIONES .. 5
 V.3. GENERALIDAD BOTÁNICA ... 6
 V.3.1. PLANTA .. 6
 V.3.2. RAÍZ .. 6
 V.3.3. TALLOS ... 6
 V.3.4. HOJAS .. 7
 V.3.5. FLORES .. 8
 V.3.6. FRUTO ... 9
 V.3.7. SEMILLAS .. 11
 V.5. PARTICULARIDADES DEL CULTIVO .. 13
 V.6. REQUERIMIENTOS EDÁFICOS .. 14
 V.7. TIPOS DE ABONOS ... 14
 V.8. EXIGENCIAS NUTRITIVAS DE LA PLANTA DE MELÓN .. 17
 V.9. ABONADO DEL MELÓN .. 17
 V.10. ABONADO FOLIAR ... 18
 V.11. CULTIVO ... 18
 V.12. PRODUCCIÓN .. 19
 V.13. MARCOS DE PLANTACIÓN ... 19
 V.14. CRECIMIENTO Y DESARROLLO DE LA PLANTA .. 20
 V.15. ENTUTORADO .. 21
VII.1.4 Número de frutos. .. 53

VII.2. Evaluación de las variables de calidad del fruto de las plantas de melón después de la cosecha... 55

VII.2.1 Evaluación de las variables diámetro, peso, dureza, sólidos solubles y pH medidas a los frutos de las plantas de melón... 55

VII.3. Discusión .. 57

VIII. CONCLUSIÓN .. 58

IX. RECOMENDACIONES .. 59

X. REFERENCIAS BIBLIOGRÁFICAS ... 60
ÍNDICE DE FIGURAS.

Fig. V.3.1. Raíz adulta de planta de melón ... 6
Fig. V.3.2. Tallo de la planta de melón.. 7
Fig. V.3.3. Hoja de la planta de melón .. 7
Fig. V.3.4.1. Flores femeninas de melón ... 8
Fig. V.3.4.2. Flores masculina y femenina de melón ... 8
Fig. V.3.5. Fruto de melón .. 9
Fig. V.3.6. Semillas de melón. ... 11
ÍNDICE DE CUADROS.

Cuadro V.22.1. Principales países productores de melón ... 39
Cuadro V.22.2. Producción de melón en México .. 39
Cuadro V.22.3. Producción por tipo de melón en México ... 40
Cuadro VII.1.1.1. Resumen del análisis estadístico del efecto del tipo de fertilización sobre el número de hojas en las plantas de melón .. 47
Cuadro VII.1.1.2. Análisis de varianza del efecto del tipo de fertilización sobre el número de hojas en las plantas de melón .. 48
Cuadro VII.1.2.1. Resumen del análisis estadístico del efecto del tipo de fertilización sobre la longitud de las plantas de melón .. 49
Cuadro VII.1.2.2. Análisis de varianza del efecto del tipo de fertilización sobre la longitud de las plantas de melón ... 50
Cuadro VII.1.3.1. Resumen del análisis estadístico del efecto del tipo de fertilización sobre el número de flores en las plantas de melón .. 51
Cuadro VII.1.3.2. Análisis de varianza del efecto del tipo de fertilización sobre el número de flores en las plantas de melón ... 52
Cuadro VII.1.4.1. Resumen del análisis estadístico del efecto del tipo de fertilización sobre el número de frutos en las plantas de melón .. 53
Cuadro VII.1.4.2. Análisis de varianza del efecto del tipo de fertilización sobre el número de frutos en las plantas de melón ... 54
Cuadro VII.2.1.1. Resumen del análisis estadístico del efecto del tipo de fertilización sobre las variables diámetro, peso, dureza, sólidos solubles y pH evaluados a los frutos de las plantas de melón .. 55
Cuadro VII.2.1.2. Análisis de varianza del efecto del tipo de fertilización sobre las variables diámetro, peso, dureza, sólidos solubles y pH evaluados a los frutos de las plantas de melón .. 56
I. INTRODUCCIÓN.

El melón mexicano es una hortaliza que ha mantenido su participación en el mercado internacional por su calidad. Este producto representa una fuerte derrama económica para su manejo, cosecha y empaque. Es uno de los principales productos agropecuarios en el renglón de captación de divisas. El melón contiene agua en un 90%, fibra dietética, energía, proteína, vitaminas y minerales. Se consume fresco en rebanadas, cubos o en cocteles combinado con otras frutas como papaya y sandía, jugos y licuados con leche y en helados. Las principales variedades son las tipo Cantaloupe, conocido como chino, rugoso o reticulado y en menor proporción las de tipo liso, donde destacan la variedad Money dew conocido como melón amarillo o gota de miel.

El melón, desde principios del siglo XX, ha sido un producto generador de divisas para el país, así como importante fuente de empleo y utilidades para los productores mexicanos. No obstante, a partir de los años sesenta de dicho siglo, comenzó a tener más importancia para los productores mexicanos, debido a la mayor demanda tanto del mercado nacional como del internacional. Sin embargo, la creciente participación de países centroamericanos que han empezado a ganar espacios en el mercado estadounidense (importador del 99% de las exportaciones mexicanas), complica la comercialización de esta fruta, limitando la participación de más productores mexicanos en dicho mercado (Hernández et al., 2006).

El cultivo de melón Cantaloupe, en sus versiones híbridos y cultivares como: Primo, Cruiser, Cabrillo, Laredo, Top Mark, se desarrolla principalmente en el ciclo de invierno y genera más de 200 mil jornales por año, por lo que su importancia como cultivo generador de empleo es muy alta con una derrama económica directa estatal de más de 100 millones de pesos (SAGARPA, 2007). La constante presencia de plagas y enfermedades, además del desconocimiento de las condiciones del suelo, propician que los siniestros en este cultivo sean cada vez más frecuentes, confundiéndose las deficiencias nutricionales con problemas de enfermedades y viceversa y en ocasiones la pérdida total de la cosecha, por lo que a partir de 1989 se tuvo una disminución de la producción de fruto (Hernández et al., 2006).

La agricultura orgánica es un sistema de producción que trata de utilizar al máximo los recursos de la finca, dándole énfasis a la fertilidad del suelo y la actividad biológica y al mismo tiempo, a minimizar el uso de los recursos no renovables y no utilizar fertilizantes y plaguicidas sintéticos para proteger el medio ambiente y la salud humana. La agricultura orgánica involucra mucho más que no usar agroquímicos, también depende de bioplaguicidas. La la aplicación foliar de composta de té enriquecida con microorganismos mejora el crecimiento, el rendimiento y la calidad del melón (Cucumis melo L.) cultivado bajo el sistema de fertirrigación de riego por goteo y la supresión del moho polvoriento causado por Golovinomyces cichoracear um DC (Yuvarani et al., 2013).
Estudios realizados por Irisson et al. (1994) sobre la vermicomposta originada a partir de pulpa de café, mostraron un incremento en la concentración de minerales (N, Ca, Mg, Na, K, y P) y una disminución de la MO (Materia Orgánica), lo que se traduce en la transformación de N orgánico a N mineral, el cual es fácilmente asimilable por las plantas. Durante el trasplante previene enfermedades y lesiones por cambios bruscos de temperatura y humedad, se puede usar sin inconvenientes en estado puro y se encuentra libre de nemátodos. Su pH neutro la hace sumamente confiable para ser aplicado a especies delicadas (Lavalle et al., 1994).

La vermicomposta se ha empleado como enmienda orgánica alternativa a la fertilización química tradicional, sobre el crecimiento y producción inicial de plantas de papaya (Carica papaya L.) (Sindoni et al., 2009). En el cultivo de chile chilaca (Capsicum annum L.) se ha empleado a la vermicomposta como alternativa de fertilización, donde se encontraron diferencias significativas para las variables de rendimiento, número de frutos y diámetro de fruto (Reséndez & García, 2002).

Por lo anterior se propuso estudiar el efecto de la vermicomposta en el crecimiento y calidad del fruto del cultivo del melón (Cucumis melo L.) bajo condiciones de invernadero, midiendo los parámetros de longitud de la planta, número de hojas, número de flores, número de frutos, peso del fruto, diámetro del fruto, dureza, sólidos solubles y pH.
II. JUSTIFICACIÓN

En México, se tiene destinado al cultivo de melón una superficie de 20 000 Ha, al igual que en Marruecos, sin embargo México produce 142 mil Ton menos, lo que lo deja con un rendimiento de 28 Ton/Ha, por lo que es necesario buscar métodos alternativos que ayuden a mejorar la producción y el rendimiento. Actualmente en México se cultiva al melón bajo el sistema de fertirrigación de riego por goteo empleando fertilizantes químicos, pero aún así no se ha logrado igualar en producción a Marruecos, además que el uso de fertilizantes químicos a largo plazo ha demostrado tener efectos perjudiciales sobre la estructura del suelo y en la salud del cultivo, es por ello que se requiere buscar una alternativa para mejorar la producción sin afectar al suelo y al cultivo de melón, de acuerdo a estudios realizados sobre el cultivo orgánico de papaya (Carica papaya L.) (Sindoni et al., 2009) y de chile chilaca (Capsicum annuum L.) (Reséndez & García, 2002), lograron alcanzar altos niveles de producción al usar vermicomposta como componente del sustrato, por lo que se espera obtener resultados similares en el cultivo de melón al utilizar vermicomposta como componente del sustrato en el campo, así como previamente en el invernadero, logrando incrementar el rendimiento en la producción.

III. OBJETIVOS

III.1. GENERAL.

“Evaluar el efecto de la vermicompostasobre parámetros de crecimiento, rendimiento y calidad del fruto en plantas de melón cultivadas en invernadero.”

III.2. ESPECÍFICOS.

1) Evaluar el crecimiento y rendimiento de la planta de melón bajo los parámetros de longitud de la planta, número de hojas, número de flores, número de frutos.

2) Evaluar la calidad del fruto bajo los parámetros de peso del fruto, diámetro del fruto, dureza, sólidos solubles, pH.
IV. PLANTEAMIENTO DEL PROBLEMA

La producción de melón ha sido una importante fuente de empleo y de utilidades para productores mexicanos, sin embargo la creciente participación de países centroamericanos ha complicado la comercialización de esta fruta, limitando la participación de más productores mexicanos. Lo cual ha obligado que los productores recurran al uso excesivo de los fertilizantes químicos, los que a largo plazo llevan a la compactación de la tierra y a cultivos pobres, reduciendo aún más el rendimiento en la producción. Según datos estadísticos obtenidos de la FAO, sobre la producción de melón en México del año 2008 al 2012 la producción de melón disminuyó 7 mil toneladas, lo cual hace necesario que se realicen estudios sobre otras opciones de fertilización, tales como las fuentes orgánicas como son el estiércol y la vermicomposta.

De no hacerlo, el uso excesivo de fertilizantes químicos podría llegar a producir varios efectos ambientales negativos, tales como la erosión de las tierras de cultivo, la contaminación de los suministros de agua potable y la alteración de ecosistemas.
V. FUNDAMENTO TEÓRICO

V.1. ORIGEN.

No se conoce con certeza el origen del cultivo del melón. Parece ser que comenzó a cultivarse en el sudeste y este del continente asiático, desde donde se extendió por todos los países cálidos al ser un cultivo exigente en calor y sus frutos muy apreciados en épocas calurosas. Opiniones diversas lo localizan en África en cuyo continente existen otras especies afines al melón. Otros investigadores lo sitúan originario de la India siendo cultivado desde lejanos tiempos. Lo que sí es cierto es que su cultivo es muy antiguo a pesar de que algunos detractores de esta fruta la consideraban alimento peligroso para la vida (Ridao, 2000).

V.2. DENOMINACIONES.

Se trata de una hortaliza perteneciente a la familia de las cucurbitáceas, cuyo nombre científico es Cucumis melo L.; tipo fanerógamas, por reproducirse por medio de semillas. Subtipo angiospermo cuyo gineceo posee ovario y estigma y las semillas están encerradas en el fruto. Clase Dicotiledóneas por disponer sus semillas de dos cotiledones. Sub Clase Metaclamídeas o dicotiledóneas gamopétalas por tener periantio (corola) con las piezas soldadas por lo menos en la base, con flores pentámeras y de estambres insertos en ella. Su fruto en pepónide (baya grande) con fuerte pericarpio y placenta carnosa (Ridao, 2000).

El melón recibe estas denominaciones en los diferentes países:

- Alemán Melone
- Inglés Melon
- Francés Melon
- Italiano Melone
- Holandés Meloen
- Portugués Melao
V.3. GENERALIDAD BOTÁNICA

V.3.1. PLANTA.

El melón es una planta herbácea, anual, rastrera o trepadora si se le facilita un entutorado apropiado mediante zarcillos sencillos de 20-30 cm de longitud que nacen en las axilas de las hojas, junto a los brotes en formación. Gracias al cultivo forzado y a su protección en invernadero se ha ampliado el tiempo de su permanencia en el mercado (Maroto, 1995).

V.3.2. RAÍZ.

La raíz adulta (Fig. V.3.1.) de la planta de melón es pivotante con un sistema radicular secundario extenso que puede alcanzar hasta 1,5 metros de profundidad, pero superficial en cultivos enarenados donde el agua y fertilizantes están muy próximos, no sobrepasando, generalmente, los 50 cm de profundidad (Maroto, 1995).

También, y dependiendo del tipo de suelos, las raíces pueden alcanzar más o menos longitud; así en terrenos arcillosos el desarrollo es más reducido, no así en terrenos sueltos en donde el sistema es más denso, alrededor de 100-150 raíces secundarias. A veces, de la raíz principal nace otra que suele ser tan larga y gruesa como la principal (Maroto, 1995).

![Fig. V.3.1.- Raíz adulta de planta de melón.](image)

V.3.3. TALLOS.

Los tallos (Fig.V.3.2) son sarmentosos, de color verde, flexible y ramificado, de sección pentagonal, cuadrangular o cilíndrica en plantas jóvenes, blandas y recubiertas de débiles formaciones pelosas. Por su crecimiento rastrero se desarrolla a ras del suelo, pero también
trepador y con zarcillos caulinares que se aprovecha en algunas variedades para el cultivo en tutorado (Maroto, 1995).

![Fig. V.3.2.- Tallo de la planta de melón.](image)

En el tallo principal se insertan las hojas de cuyas axilas brotarán las ramificaciones secundarias o hijos, y de estas surgen otras ramificaciones terciarias o nietos donde nacerán las flores femeninas, principalmente, portadoras de los frutos. Por su débil consistencia las plantas sin ayuda de tutores se tumban en el suelo; en el cual se apoya para su crecimiento, pudiendo alcanzar hasta los 2,5 metros (Maroto, 1995).

V.3.4. HOJAS.

Las hojas (Fig.V.3.3) son pecioladas, con pecíolo largo de 10 - 15 cm, palminervias, alternas, más o menos reniformes, redondeadas en plantas jóvenes y lobuladas, divididos en 3-5 lóbulos, con los bordes dentados pero no pronunciados, cubiertas de pelosidad y de tacto áspero. Igualmente, las hojas pueden aparecer sin apenas apreciarse los lóbulos. Las hojas se desarrollan en cada nudo del tallo junto a los zarcillos, pudiendo variar de color y tamaño dependiendo de unas variedades a otras. En las axilas de cada hoja, con el tallo principal nacen los brotes de segundo orden (Maroto, 1995).

![Fig. V.3.3.- Hoja de la planta de melón.](image)
V.3.5. FLORES.

En las axilas de las hojas nacen unas yemas que están protegidas por hojitas colocadas en forma imbricada. Estas yemas son floríferas y dan lugar a flores gamopétalas con periantio doble, (diploclamídeas), masculinas y femeninas, principalmente, dependiendo su aparición del ambiente y de la variedad cultivada. Estas últimas son las que, una vez polinizadas, darán origen al fruto, diferenciándose fácilmente, unas de otras, porque las femeninas poseen un ovario ínfero que se aprecia notablemente. Las flores del melón (Fig.V.3.4.2) son de color amarillo, pedunculado y axilar (Maroto, 1995).

Fig. V.3.4.1.- Flores femeninas de melón. Se observa el ovario ínfero.

Todos los verticilos son concrescentes en su parte inferior donde están soldados con el ovario, apareciendo estos verticilos insertados por encima del ovario, es decir ovario ínfero tricarpelar y trilocular, adherente al cáliz o flores ínferovarieas. Cáliz solidario a la corola (Maroto, 1995).

La corola tiene forma de embudo con estambres muy cortos. Las flores femeninas, al igual que en la sandía, está formado el rudimento del futuro fruto (Maroto, 1995).

Fig. V.3.4.2.- Flores masculina y femenina de melón.
En la planta, las flores masculinas (Fig.V.3.4.2) pueden observarse a partir de los 10-15 días de la plantación, solitarias o agrupadas en dos o tres en las ramificaciones principales o de primer orden. Posteriormente continúan apareciendo a lo largo de todo el ciclo vegetativo. Las flores masculinas poseen tres anteras con dos teca españolas cada una, siendo por lo general más numerosas que las femeninas. Las flores femeninas (Fig.V.3.4.1), dependiendo de la variedad y sistema de cultivo, aparecen aproximadamente a partir de los 20-25 días de la plantación, unos 10 días después que las flores masculinas, son algo más grandes y por regla general crecen a partir de las ramas de 2º orden. Esta característica es importante durante la operación de poda pues el adelanto en su aparición favorecerá una recolección más precoz. La floración suele ser escalonada para dar lugar a dos o tres cortes. En dicho proceso de floración juega un papel importante el agua pues su reducción al principio del ciclo evita el excesivo desarrollo vegetativo en beneficio de la floración (Maroto, 1995).

Tanto unas como otras permanecen abiertas durante uno o dos días, abriéndose por la mañana y cerrándose al atardecer, así hasta que pasado dicho tiempo si no han sido fecundadas dejan de ser receptivas (Maroto, 1995).

El nivel de fertilizantes tiene una gran influencia, como después veremos, en la aparición del número de flores y del tipo de flor (Maroto, 1995).

V.3.6. FRUTO.

Es una pepónide polimórfico, procedente de un ovario ínfero, cuya placenta muy desarrollada llega desde el eje hasta la pared carpelar, en cuyo interior se encuentran las semillas. La planta de melón se caracteriza por producir frutos de forma, tamaño y color de la piel y de la pulpa diversa. El fruto del melón (Fig.V.3.5) es una baya grande con placenta carnosa y epicarpio quebradizo, con rasgos muy diversos dependiendo de la variedad cultivada (Maroto, 1995).

Fig. V.3.5.- Fruto de melón. Se observan las semillas y la pulpa.
a) Forma:
- Esférico, como los tipos galia y cantalupos
- Ovalados, como algunas variedades de tipo galia
- Más o menos alargados, como los melones tradicionales españoles: amarillos, piel de sapo, tendral

d) Color de la pulpa:
- Blanco, la de los melones tradicionales españoles
- Amarillento verdoso, amarillo anaranjado, como las variedades tipo galia
- Asalmonados, naranja, más o menos intenso, como los cantalupos

e) Tamaño:
Puede considerarse para la descripción de las variedades los siguientes pesos y tamaños:
- Muy pequeño. menor de 1 kg
- Pequeño. menor 1-2 kg
- Mediano. menor 2-3 kg
- Grande. menor 3-4 kg
- Muy grande. mayor de 4 kg

b) Color de la piel:
- Color verde más o menos oscuro, amarillo, dorado, blanco, moteado, etc.

c) Aspecto de la epidermis:
- Lisa
- Escriturado: Son protuberancias longitudinales más o menos notables sobre la piel, típico de los melones piel de sapo
- Reticulado: Especie de red que recubre todo el fruto, típico de los melones galia
- Con meridianos más o menos oscuros
- Rugosos: Peculiar en frutos tipo tendral, con gran resistencia a la conservación

f) Contenido en azúcar:
Se calcula a través del índice refractométrico.
Es diferente, según autores y variedades: Los parámetros siguientes pueden considerarse adecuados para el fruto de melón:
- Bajo. Menor de 10º Brix
- Medio. 10-14º Brix
- Alto. Más de 14%
V.3.7 SEMILLAS.

Son el resultado de los óvulos fecundados y maduros contenidos en el fruto. La semilla de melón (Fig. V.3.6) se compone de los tegumentos que protegen a la semilla, de las substancias nutritivas y del embrión. Este último es la parte más importante ya que de él depende la germinación, crecimiento y desarrollo de la nueva planta. Las semillas de melón son de tamaño y peso variable. Así, las variedades españolas, como son piel de sapo y amarillo canario un gramo contienen entre 25 y 30 semillas. Son, generalmente, fusiformes, aplastadas, lisas, de 3-6 mm de largas, de color blanco amarillento. Su facultad germinativa dura, aproximadamente, 5-6 años (Gómez, 1995).

Fig. V.3.6.- Semillas de melón.

Las características de las distintas partes de la planta anteriormente mencionadas o caracteres visibles (fenotipo), pueden tener variación, como después veremos, por estar sometidas a la acción del medio y a la influencia cualitativa de los componentes cromosómicos de las células que determinan los caracteres hereditarios o genotipo (Gómez, 1995).

V.4. VARIEDADES DE MELÓN.

Los tipos de melones más importantes son:

· Melones verdes. Dentro de este grupo existen tres tipos: Piel de sapo, Rochet y Tendral. Los Piel de sapo se caracterizan por poseer frutos uniformes en cuanto a calidad y producción, alargados, con pesos comprendidos entre 1.5 y 2.5 kg, con pulpa blanco-amarillenta, compacta, crujiente, muy dulce (12-15º Brix) y poco olorosa. La corteza es fina, de color verde, con manchas oscuras que dan nombre a este tipo de melones. Su precocidad es media-baja (ciclo de unos 100 días), su conservación aceptable (2-3 meses) y su resistencia al transporte muy buena. La planta es vigorosa (Torres, 1997).

Los melones tipo Rochet se caracterizan por su buena calidad, precocidad media (aproximadamente 100 días), buena producción, frutos alargados con pesos de 1.5-2 kg, piel lisa, ligeramente acostillada y con cierto escriturado, sobre todo en las extremidades, de color verde. La pulpa es blanca-amarillenta, compacta, poco aromática, muy azucarada (14-17º Brix) y de consistencia media. Buena resistencia al transporte pero corta conservación (1-2 meses máximos) (Torres, 1997).

El melón tipo Tendral es originario del sudeste español, de gran resistencia al transporte y excelente conservación. El fruto es bastante pesado (2-3 kg), de corteza rugosa de color verde oscuro y un elevado grosor que le confiere gran resistencia al transporte. Es uniforme, redondeado y muy asurcado pero sin escriturado. La pulpa es muy sabrosa, blanca, firme, dulce y nada olorosa. La planta es de porte medio, vigorosa, con abundantes hojas aunque no llega a cubrir todos los frutos, por lo que deben cuidarse los daños producidos por el sol. Es una planta para ciclos tardíos de aproximadamente 120 días (Torres, 1997).

· Melones Cantaloupe. Presenta frutos precoces (85-95 días), esféricos, ligeramente aplastados, de pesos comprendidos entre 700 y 1200 gramos, de costillas poco marcadas, piel fina y pulpa de color naranja, dulce (11-15 ºBrix) y de aroma característico. El rango óptimo de sólidos solubles para la recolección oscila entre 12 y 14 ºBrix, ya que por encima de 15 ºBrix la conservación es bastante corta. Existen variedades de piel lisa (europeos, conocidos como Charentais o Cantaloupe) y variedades de piel escriturada (americanos, conocidos como Supermarket italiano). Cuando alcanza la plena madurez el color de la piel cambia hacia amarillo. La planta adquiere un buen desarrollo, con hojas de color verde-gris oscuro (Torres, 1997).

· El melón Honeydew, tiene una cáscara verde amarilla granulosa y pulpa naranja. Está adaptado a climas secos y cálidos, con la piel lisa o estriada, de madurez tardía y con una buena aptitud a la conservación (Torres, 1997).

· Melones Galia. Presenta frutos esféricos, de color verde que vira a amarillo intenso en la madurez, con un denso escriturado. Pulpa blanca, ligeramente verdosa, poco consistente,
con un contenido en sólidos solubles de 14 a 16 °Brix. Híbrido muy precoz (80-100 días, según la variedad), con un peso medio del fruto de 850-1900 gramos (Torres, 1997).

- Melones de larga conservación. Presentan básicamente tres ventajas: alto contenido en azúcar (1-2 °Brix más alto que los híbridos normales de su categoría), mayor tiempo de conservación (almacenaje mínimo de 12 días a temperatura ambiente) y excelente calidad de pulpa (sólida y no vitrecente). Se adaptan bien al transporte, ya que su piel es menos susceptible a daños. Se puede hablar de marcas de melón larga vida de calidad reconocida y demandada por los mercados extranjeros, que agrupan la producción de varias empresas de origen para vender en destino (Torres, 1997).

V.5. PARTICULARIDADES DEL CULTIVO.

El manejo racional de los factores climáticos de forma conjunta es fundamental para el funcionamiento adecuado del cultivo, ya que todos se encuentran estrechamente relacionados y la actuación de uno de estos incide sobre el resto.

- Clima: la planta de melón es de climas cálidos y no excesivamente húmedos, de forma que en regiones húmedas y con escasa insolación su desarrollo se ve afectado negativamente, apareciendo alteraciones en la maduración y calidad de los frutos.

- Temperatura: Para un óptimo desarrollo del melón es necesario un clima cálido, aunque existen ciertos híbridos adaptados a climas templados. La temperatura ideal de germinación, crecimiento, desarrollo y floración oscila de 28 °C a 32 °C. Para producir frutos con solidez y buen sabor, se requiere de temperaturas entre los 18 °C y 25 °C. Antes de la maduración de los frutos es necesario que durante la noche la temperatura sea de 15 °C, con baja humedad y sin lluvias. La temperatura de germinación mínima es de 14 °C a 16 °C y la máxima de 20 °C a 30 °C. Las temperaturas bajas y la falta de luz en la plantación, endurecen las plantas. Es un cultivo susceptible al daño del frío, que se muestra como cavidades y pudrición superficial, pero cuya temperatura de aparición depende del tipo de melón. En la etapa de llenado y maduración de los frutos las temperaturas del suelo deben oscilar entre los 12 a 17 °C ya que a mayor temperatura en el suelo mayor es la absorción de agua por parte de la planta, el exceso de humedad en el suelo produce ahogamientos y podredumbres en los frutos. Se sugiere evitar que la temperatura baje de 10 °C, porque los melones son frutas climatéricas (como la banana) en las que el contenido de etileno sube cuando comienzan a madurar.

- Humedad: De manera general el melón es un cultivo que requiere poca humedad. Al inicio del desarrollo de la planta la humedad relativa debe ser del 65-75%, en floración del 60-70% y en fructificación del 55-65%. La planta de melón necesita bastante agua en el período de crecimiento y durante la maduración de los frutos para obtener buenos rendimientos y calidad. El exceso de agua es también perjudicial para este cultivo.
-Luminosidad: la duración de la luminosidad en relación con la temperatura, influye tanto en el crecimiento de la planta como en la inducción floral, fecundación de las flores y ritmo de absorción de elementos nutritivos.

El desarrollo de los tejidos del ovario de la flor está estrechamente influenciado por la temperatura y las horas de iluminación, de forma que días largos y temperaturas elevadas favorecen la formación de flores masculinas, mientras que días cortos con temperaturas bajas inducen el desarrollo de flores con ovarios.

-Suelo: la planta de melón no es muy exigente en suelo, pero da mejores resultados en suelos ricos en materia orgánica, profundos, mullidos, bien drenados, con buena aireación y pH comprendido entre 6 y 7. Si es exigente en cuanto a drenaje, ya que los encharcamientos son causantes de asfixia radicular y podredumbres en frutos.

-Altitud: El melón se produce entre 0 y 1.000 msnm (metros sobre el nivel del mar).

-Anhídrido carbónico: El carbono es esencial para el desarrollo de las plantas que lo obtienen a través de las estomas, a partir del anhídrido carbónico del aire; es un factor indispensable para la fotosíntesis muy interrelacionado con la humedad y la temperatura. Como norma general, por medio de una buena ventilación en las horas de la mañana, se proporciona a las plantas la cantidad suficiente de este nutriente. El control correcto de la concentración de este gas es complicado y su aportación mediante inyección en el agua de riego, inyección del gas directamente o mediante combustión de propano, que es el sistema más extendido, u otras sustancias, puede ser problemático si es empleado directamente por el agricultor. Cualquier sistema de aporte de CO₂ exige la máxima uniformidad, así como la necesidad de instalar sensores que eviten aportes elevados del gas. En el cultivo del melón es normal un enriquecimiento en torno a 1.000 ppm.

V.6. REQUERIMIENTOS EDÁFICOS.

Para una buena producción de melón es necesario contar con suelos bien dotados de materia orgánica. Además es importante que los suelos sean profundos, aproximadamente con 60 cm de profundidad y con un pH entre 6 y 7. Finalmente deben ser suficientemente drenados ya que de lo contrario se crea asfixia radicular y podredumbre (Jiménez & Castilla, 1986).

V.7. TIPOS DE ABONOS.

Fertilizantes empleados en el cultivo del melón:

a) Abonos orgánicos.- El cultivo del melón responde muy bien a la incorporación de materia orgánica. El estiércol, principal abono orgánico, es aportado de fondo un
mes antes de la siembra en los terrenos sin acolchado de arena y durante la realización de los enarenados. El estiércol debe de estar bien fermentado, de lo contrario se produce un desarrollo excesivo de la vegetación en detrimento de la floración (Jiménez & Castilla, 1986).

Esta fertilización orgánica aporta materia orgánica al suelo y desempeña dos funciones importantes:

• Mejora la estructura del suelo.
• Aumenta su fertilidad.

El contenido de materia orgánica en el suelo no ha de ser inferior al 3%, manteniendo dicho nivel con la adición de los abonos orgánicos correspondientes. La materia orgánica, además de las propiedades mejorantes de la estructura del suelo ya mencionado, constituye una importante reserva de principios nutritivos, esencialmente nitrógeno y fósforo que progresivamente va liberando y poniendo a disposición de las plantas, además, los terrenos con buen contenido de materia orgánica permiten aguas con mayor concentración salina (Jiménez & Castilla, 1986).

b) Abonos minerales.- Proporcionan uno o varios elementos fertilizantes a las plantas: potasio (K₂O), nitrógeno (N), fósforo (P₂O₅), calcio (CaO) y magnesio (MgO), además de otros microelementos, tomados en pequeña proporción, manganeso, hierro, zinc, boro, molibdeno, cobre, etc. Su falta produce enfermedades llamadas “carenciales” (Jiménez & Castilla, 1986).

Igualmente, los abonos minerales corren y estabilizan la composición química del suelo, aportando elementos nutritivos para la producción. Durante la aplicación de fertilizantes, y para evitar la elevada concentración de sales que reducen la fertilidad del suelo, hay que procurar emplear abonos complejos de alta graduación y así mismo fertilizantes líquidos (Jiménez & Castilla, 1986).

En la mayoría de las veces se utilizan abonos binarios, aunque también abonos compuestos solubles o abonos líquidos, especialmente empleados en fertirriego, denominados abonos cristalinos solubles, abonos complejos solubles, todos ellos con una solubilidad muy alta, con pH ligeramente ácido y enriquecidos, algunos de ellos, con micro-elementos (Jiménez & Castilla, 1986).

b.1) Nitrogenados.- El nitrógeno forma parte de todos los órganos de la planta. Interviene en su desarrollo, incrementa la producción, aumenta el número de flores femeninas y por consiguiente el número de frutos, contribuye a la formación de proteínas y da un color verde intenso a las hojas. Su deficiencia causa reducción del crecimiento de la planta así como del sistema radicular. La mayoría de los abonos nitrogenados son solubles, no presentando dificultad en su preparación y empleo. Generalmente no precipitan, sin
embargo hay que lavar la instalación después de cada fertirriego para impedir que las disoluciones amoniacales queden en la instalación y favorezcan la proliferación de microorganismos. Junto con el agua, los abonos nitrogenados se pierden fácilmente en profundidad. Los abonos nitrogenados empleados en riego localizado en el cultivo del melón son principalmente: sulfato amónico, nitrato amónico, ácido nítrico, urea, nitrato cálcico, etc. (Jiménez & Castilla, 1986).

b.2) Fosfóricos.- El fósforo favorece el desarrollo de las raíces, induce la formación de flores femeninas, estimula el crecimiento y la precocidad, favorece la floración y fecundación de las flores, mejorando la calidad de los frutos e interviniento, principalmente, en el engrosamiento y calidad gustativa del melón. El fósforo se almacena en el suelo, moviéndose muy poco, quedando retenido cerca de los emisores, por lo que hay que situarlo en la zona próxima a las raíces. Los abonos fosfóricos más utilizados en el cultivo del melón son: fosfato monoamónico, fosfato biamónico, ácido fosfórico (Rincón, 1997).

b.3) Potásicos.- El potasio interviene incrementando el aroma del fruto, aumenta la dureza de los tejidos y proporciona calidad, sanidad y sabor. Interviene en la formación de la clorofila y, por tanto, en la elaboración del azúcar, además de adelantar la maduración. La planta de melón es muy exigente en este elemento. Aunque los abonos potásicos son muy solubles pueden presentar problemas en aguas ricas en materia orgánica como consecuencia del efecto floculante del potasio, por ejemplo: obturaciones en los goteros cuando se utilizan instalaciones de riego localizado. Los abonos potásicos empleados en el cultivo del melón son: sulfato potásico, como abonado de fondo; y nitrato potásico, aplicado principalmente durante el periodo productivo (Rincón, 1997).

c) Complejos sólidos.- Actualmente se fabrican numerosos abonos, especialmente indicados para fertirriego, con una amplia diversidad de fórmulas para cualquier época de cultivo, a los que se les denomina abonos cristalinos solubles, abonos complejo solubles, etc. Estos fertilizantes presentan características de alta solubilidad, pH ligeramente ácido, estando algunos de ellos enriquecidos con microelementos (Rincón, 1997).

d) Abonos líquidos.- Son soluciones nutritivas concentradas muy útiles en riego localizado, conteniendo uno o varios elementos y presentando numerosas fórmulas para cualquier estado de la planta con un alto grado de solubilidad: ácido fosfórico (50 y 40% de P_2O_5), sulfato potásico (10% de K_2O), nitrocálcio (8% de N), etc. (Rincón, 1997).

e) Otros nutrientes.- En la actualidad se están utilizando en invernaderos una serie de productos conocidos por bionutrientes que se aplican al suelo, en el agua de riego o como abono foliar, complementando, de ésta forma, el efecto de los fertilizantes al mejorar la flora microbiana y desbloquear los elementos minerales del suelo (Rincón, 1997).
V.8. EXIGENCIAS NUTRITIVAS DE LA PLANTA DE MELÓN.

Observando el crecimiento y desarrollo del cultivo del melón se aprecian cuatro etapas con respecto a sus exigencias nutritivas (Guzmán, 1988).

1ª Desde la germinación o enraizamiento hasta la aparición de las primeras flores femeninas que suele ser a los 25-30 días de la plantación. Se caracteriza por el crecimiento rápido de la planta. En esta primera etapa hay que evitar el exceso de nitrógeno en detrimento del fósforo, ya que influye en una disminución de la floración. No obstante, hasta el inicio de la floración la planta de melón es exigente en nitrógeno. Igualmente, desde el inicio del crecimiento de las raíces hasta completar la floración los aportes de fósforo son muy necesarios (Guzmán, 1988).

2ª Desde la aparición de las primeras flores hasta la fecundación de los frutos. En esta segunda etapa se incrementa la demanda de la humedad y de fertilizantes fosforados. La aportación de fósforo no debe faltar para ir completando el desarrollo del sistema radicular. Se ha de procurar evitar excesivas dosis de nitrógeno durante la floración y cuajado ya que puede favorecer el aborto de las primeras flores. A partir de la fecundación y hasta la maduración es necesario mantener un nivel adecuado de nitrógeno asimilable. La asimilación de magnesio, al igual que el calcio, se incrementa desde la fecundación hasta el inicio del crecimiento de los frutos. A partir de entonces se estabiliza su absorción. Igualmente la carencia de magnesio en esta etapa puede provocar una disminución del cuaje (Guzmán, 1988).

3ª Desde el inicio del engrosamiento hasta el inicio de la maduración de los primeros frutos. Caracterizada por un requerimiento importante de agua y fertilizantes. El uso racional del fósforo y del potasio tiene una acción importante para el engrosamiento y calidad de los frutos del melón. Procurar en esta fase no excederse en abonado nitrogenado (Guzmán, 1988).

4ª Desde el inicio de la maduración hasta la completa maduración de los frutos. En esta fase las plantas tienden a paralizar su crecimiento y son muy exigentes en fertilizantes de asimilación rápida a base de potasio. Por lo tanto, es necesario mantener un buen nivel de potasio hasta la completa maduración de los frutos; su acción, además, disminuye la sensibilidad al rajado del fruto. Durante la maduración, un exceso de nitrógeno hace insípidos los frutos, pues reduce el porcentaje de azúcar, perjudicando su calidad y conservación. En esta etapa se ha de tener sumo cuidado con los excesos de agua (Guzmán, 1988).

V.9. ABONADO DEL MELÓN.

La diversidad de tipos de melón con sus correspondientes variedades y las variantes relacionadas con el sistema de cultivo: suelo, agua, clima, fecha de siembra o plantación, entutorado o no, etc., hace prácticamente imposible determinar una fertilización específica.
En diversos ensayos, con diferentes variedades de melón en fertirriego y suelo enarenado, se constató la escasa influencia sobre la productividad del abonado de fondo. Sabemos que los fertilizantes tienen como objetivo la restitución al suelo de los elementos nutritivos necesarios para el crecimiento, desarrollo y producción de la planta. Si esos elementos ya están formando parte del suelo porque el melón, normalmente, sigue a otra especie vegetal y si, además, estos fertilizantes se les van aportando durante todo el ciclo, es lógico que, en ocasiones, y dependiendo de la fecha de finalización del abonado anterior, el abonado de fondo pueda tener escasa influencia sobre el cultivo del melón. No obstante, y teniendo en cuenta la diversidad de suelos y aguas, además de la gran variación de fechas de cultivo, ciclos de producción, tipos de melón, etc. y salvo un conocimiento completo del suelo, agua y fertilización aportada, se recomienda aportar elementos nutritivos tanto de fondo como durante el cultivo (Pomares et al., 1995).

V.10. ABONADO FOLIAR.

Las plantas son capaces de absorber los elementos nutritivos a través de las hojas, lo que constituye un poderoso medio de aporte de elementos nutritivos. De esta forma puede complementarse el abonado con pulverizaciones foliares con diversos elementos (N, P, K), además de microelementos. Igualmente se suelen aplicar para corregir carencias, ya sea debido a falta de nutrientes en el suelo, bloqueo o escasa movilidad de algún elemento. Para prevenir posibles enfermedades carenciales es conveniente incorporar en uno de los riegos o en pulverización, una vez por semana, como abonado foliar, un corrector de carencias. En este caso se recomienda llevar a cabo las aplicaciones foliares al atardecer o por la mañana, mojando bien las hojas y aprovechando la realización de algún tratamiento (Pomares et al., 1995).

V.11. CULTIVO.

La planta de melón es una de las especies vegetales más extendida por toda la geografía, cultivándose al aire libre y en invernadero; así como bajo túneles, acolchados o invernaderos pequeños con diversas y variadas técnicas culturales ya sea en secano o regadío. Salvo en comarcas de climatología desfavorable el cultivo de melón en invernadero suele llevarse a cabo sin calefacción, por lo que se aprovecha los primeros meses del año, una vez que ha pasado el riesgo de heladas (Pardo Pascual, 1993).

La posibilidad de adelantar las fechas de la siembra o plantación para obtener producciones tempranas exige conocer una serie de prácticas del cultivo y de las condiciones en que éstas deben desarrollarse, como son, entre otras, facilitar a las plantas la ventilación y el manejo del agua y fertilizantes suficientes y necesarios (Pardo Pascual, 1993).
V.12. PRODUCCIÓN.

Debido a la diversidad de climas en el país, el melón se produce todo el año, aunque no es uniforme, pues generalmente, la mayor cantidad se cosecha en el ciclo otoño-invierno. En Chiapas la cosecha dura de 2 a 4 meses. Esta velocidad de producción permite que el cultivo sea rentable rápidamente por la recuperación de la inversión a corto plazo (López Gálvez, 1993).

En cuanto a la tecnología utilizada para la producción del cultivo de melón en Chiapas, no se cuenta con infraestructuras adecuadas para el manejo del producto (López Gálvez, 1993).

Métodos de siembra:

a) Directa.- La semilla pregerminada o no, puesta en remojo o no, según se ha visto anteriormente, se deposita directamente en el terreno al marco prefijado, distribuyéndose manualmente por el agricultor cuando la temperatura, época y grado de humedad en el suelo son las adecuadas (López Gálvez, 1993).

b) En semillero.- Para trasplante con cepellón de acuerdo con las normas dadas anteriormente (López Gálvez, 1993).

El cultivo de melón se adapta tanto a siembra directa como con cepellón. Se puede elegir uno u otro sistema dependiendo de la época de cultivo. En la actualidad y utilizando semillas híbridas es muy raro la siembra directa. La economía del tiempo es una realidad hoy en día para el agricultor. Los, aproximadamente, 30 días que permanece la planta en el semillero comercial los dedica el agricultor a las últimas recolecciones de tomate, pimiento, judía verde, etc. La utilización cada vez más de variedades híbridas, cuyas semillas son más caras, obliga al empleo de siembras en semilleros comerciales o en macetas realizados por el propio agricultor y plantación posterior con cepellón. La práctica de la siembra directa tiene cada día menos adeptos (López Gálvez, 1993).

V.13. MARCOS DE PLANTACIÓN.

En cultivos rastreros los marcos de plantación más frecuentes son de 2 m x 0.75 m x 2 m x 0.5 m, dando densidades de plantación que oscilan entre 0.75 y 1 planta x m². Cuando se tutoran las plantas se recomienda densidades de 1.25 – 1.5 plantas x m² y hasta 2 plantas x m² cuando la poda es a un solo tallo. No obstante, dichas densidades también pueden variar en función de la variedad cultivada, reduciéndose a 0.4 plantas x m² en el caso de los melones piel de sapo (López Gálvez, 1993).
V.14. CRECIMIENTO Y DESARROLLO DE LA PLANTA.

El crecimiento es el aumento irreversible de tamaño que, al principio, es rápido para, posteriormente, disminuir o anularse cuando la planta ha completado su desarrollo. El desarrollo, sin embargo, es el paso del vegetal por las diferentes etapas vegetativas: germinación y enraizamiento, floración, fecundación de los frutos o fructificación, engrosamiento y maduración (Reche Mármol, 2007).

Existen diversos factores que intervienen sobre el crecimiento y desarrollo de las plantas:

- Climáticos.- Es muy importante en cultivos forzados, cuyo ambiente contribuye con eficacia al desarrollo de las plantas.
- Genéticos.- Característicos de cada tipo de melón y variedad.
- Suelo.- Su composición y estructura influyen decisivamente en el crecimiento y desarrollo de la planta; así como de las sustancias minerales absorbidas por las raíces y de los aportes fertilizantes que nutren y movilizan las reservas del suelo.

En el crecimiento y desarrollo del melón se observan cuatro etapas muy diferenciadas:

1. Desde la germinación o enraizamiento hasta la aparición de las primeras flores masculinas. Se caracteriza por el crecimiento rápido de la planta y del sistema radicular. De las axilas de las hojas del tallo principal nacen los brotes secundarios y de estos los de tercer orden. El final de este período coincide con el comienzo de la floración femenina que, en ocasiones y con la poda, ayudamos a su aparición forzando el nacimiento de los brotes secundarios y de tercer orden (Serrano Cermeño, 1979).

2. Desde la aparición de las flores femeninas hasta el inicio de la fecundación de los primeros frutos. Se identifica por un incremento en la demanda de fertilizantes y de humedad. Al mes de la plantación, en cultivos rastreros, ya se observan tallos secundarios de 50-60 cm de longitud. El fruto en crecimiento es muy exigente en nutrientes, debiendo la planta satisfacer estas necesidades, de lo contrario, los últimos frutos cuajados, al no recibir el aporte suficiente, pueden abortar (Serrano Cermeño, 1979).

3. Desde el inicio del engrosamiento de los frutos hasta el comienzo de la maduración. Durante esta fase la planta comienza a ralentizar su crecimiento y los nutrientes tienden a desplazarse a los frutos. A los 15-20 días de la fecundación los frutos pueden haber alcanzado la mitad de su desarrollo, durante el cual el color de la pulpa inicia el cambio a la tonalidad definitiva una vez madurada. A los 1,5-2 meses del trasplante la parcela está completamente cubierta y en cultivos entutorados las
plantas llegan a la techumbre del invernadero. Los frutos en esta fase ya han alcanzado su total desarrollo (Serrano Cermeño, 1979).

4. Desde el inicio de la maduración hasta el inicio de la recolección. La planta paraliza su crecimiento y se llevan a cabo los procesos bioquímicos para la maduración. Cuando el fruto ha alcanzado su tamaño normal comienza la acumulación de los azúcares. Al principio, el contenido de glucosa y fructosa es escaso, pero poco a poco esta concentración se va incrementando (Serrano Cermeño, 1979).

V.15. ENTUTORADO.

El melón en invernadero suele cultivarse con la planta extendida sobre el suelo o conducida verticalmente mediante el empleo de mallas, hilos, etc., de tal forma que la planta crezca y se desarrolle completamente al aire, sujeta por dichos hilos. Con el entutorado se consigue mayor producción y menos destrucción; aunque el excesivo gasto en mano de obra y el retraso en la recolección, 8-10 días, comparado todo ello con el cultivo en suelo, están incidiendo en la disminución paulatina de la superficie entutorada (Gamallo Díaz, 1996).

Por esta causa, el entutorado del melón va teniendo cada vez menos aceptación, el gasto que supone este sistema de cultivo y la mano de obra necesaria no rentabiliza, a veces, el incremento en la producción (Gamallo Díaz, 1996).

Generalmente las variedades tipo galía y cantalupo son las que predominantemente se entutoran; las variedades de frutos más voluminosos, piel de sapo, amarillos, tendral, etc. no suelen entutorarse (Gamallo Díaz, 1996).

Para la práctica del entutorado se procede así:

a) Con hilos o cuerdas de rafia.- Estas se atan a la base del tallo de la planta y el extremo se sujeta a la techumbre del invernadero. Se guía la planta en un principio alrededor del hilo para luego dejarla, que por sí sola, vaya rodeando al hilo, ayudada por sus propios zarcillos.

b) Con redes de mallas.- Las mallas se colocan verticalmente paralelas a las líneas de plantas y atadas al techo el invernadero. De esta forma, las plantas se van sujetando con sus zarcillos y van ascendiendo apoyadas en dichas mallas.

El entutorado suele iniciarse cuando la planta alcanza 30-35 cm de longitud, aproximadamente a los 25-30 días del trasplante (Gamallo Díaz, 1996).
V.16. FLORACIÓN Y FORMACIÓN DEL FRUTO.

V.16.1. FLORACIÓN Y FECUNDACIÓN.

Las flores polinizadoras, que solamente tienen estambres, aparecen cuando las primeras guías tienen de 2 a 4 hojas, aproximadamente a los 15 días después de la siembra. Las flores fructificantes aparecen cuando las guías comienzan a alargarse activamente. En el cantaloupe, las flores fructificadoras son usualmente completas, tienen tanto estambre (órganos masculinos) como pistilos femeninos o fructificantes. Se producen unas 10 flores estaminadas por cató flor pistilada, de manera que haya siempre una amplia cantidad de polen para la fecundación. Los dos tipos de flores se abren durante un día solamente. Las flores productoras de polen se caen de la planta el día después de cerrarse, pero las pistiladas permanecen adheridas por varios días. Al comienzo, la planta produce una nueva flor fructificadora con intervalos de 1 a 3 días pero este número crece rápidamente a 1 hasta 3 flores diarias a medida que aumenta el tamaño de la planta y el número de sus vástagos. Cuando se ha logrado la polinización, las flores pistiladas comienzan a crecer. Las flores mejor polinizadas se desarrollan más rápido y se vuelven dominantes; las otras se marchitan y se caen. Un proceso fisiológico de la planta causa que esas flores fértiles prendan fruto cada cierto número de días. La cantidad de fruta que una planta lleva a la madurez varía entre una y cuatro; dos o tres es lo corriente en los híbridos. El polen de melón es pesado y pegajoso, y debe ser transportado de una a otra flor por los insectos. Los únicos insectos polinizadores “eficaces” son las abejas y generalmente se colocan las colonias de abejas en la periferia de los campos, la población justa de abejas durante este período asegurará que todas las flores que vayan abriéndose serán visitadas, y que el número de estas visitas será suficiente para dar la polinización óptima, y frutos del tamaño máximo, se acostumbra colocar entre 5-10 colmenas por hectáreas dependiendo de la población en cada colmena. La lluvia, los vientos fuertes y los extremos de temperatura reducen la actividad de las abejas y, por lo tanto, los rendimientos (Gómez & Camero, 1997).

V.17. RIEGOS.

Con los riegos dotamos al terreno de la humedad necesaria para hacer frente a la evaporación y a la pérdida de agua debido a la transpiración de las plantas, disponiendo además de la suficiente agua para el desarrollo del cultivo. No sólo en el interior del invernadero debe haber un contenido óptimo de humedad, sino también el suelo ha de poseer la suficiente capacidad de retención para ir suministrando a la planta el agua necesaria durante su corto ciclo vegetativo. La primera función del agua se inicia durante la germinación, hinchando y rompiendo los tegumentos de la semilla y permitiendo la salida de las hojas cotiledonales. Después, una vez que la planta ha emergido y comienza la fotosíntesis, el agua es el vehículo que transporta los elementos minerales que desde el
suelo y a través de los pelos absorbentes de las raíces llegan a las hojas para que la savia bruta sea elaborada (Cadahia et al., 1989).

Cuando se riega el suelo, el aire contenido en el mismo es desplazado y ocupado por agua, encontrándose en ese momento la tierra en su capacidad máxima de saturación, sus espacios vacíos se encuentran llenos de agua. Poco a poco, parte del agua que satura la tierra escurre por acción de la gravedad hacia capas inferiores quedando un resto de agua rodeando a cada partícula de tierra. Al cabo de unas horas sólo queda retenido un volumen de agua que depende de la capacidad de retención del suelo es decir, de su textura. A partir de entonces y si no se suministra más agua al suelo, parte de ese agua se evapora y parte es tomada por las raíces. El contenido de agua en el suelo va disminuyendo hasta que la humedad retenida es tal, que las raíces, por mucho esfuerzo que realicen no son capaces de absorberla. En ese crítico instante conocido como “punto de marchitamiento” es al que no se debe llegar. El contenido de humedad se ha de mantener lo más cerca posible de la capacidad de campo, es decir, entre la capacidad de retención del suelo y el punto de marchitamiento. Por otra parte, cuando el terreno se encuentra en la capacidad máxima de saturación durante un tiempo prolongado puede llegar a ser peligroso, el exceso de humedad desplaza al aire del suelo pudiendo sufrir la planta, en terrenos pesados y en épocas de crecimiento, asfixia de raíces. La capacidad de retención depende del tipo de suelos. Cuantas más pequeñas son las partículas del suelo mayor es su capacidad de retención, por ello la capacidad de retención es mayor en los terrenos arcillosos (Cadahia et al., 1989).

V.18. COSECHA.

Para realizar una correcta evaluación de la calidad de los frutos de melón se debe de tener en cuenta una serie de aspectos tales como: tamaño, madurez, color de la epidermis, firmeza, aroma y ausencia de defectos como manchas, deformaciones, rajaduras, entre otros (Bretones Castillo, 1991).

Los primeros cinco aspectos indicados anteriormente, se establecen en el momento de la cosecha. Así la determinación del estado de madurez a cosecha es de suma importancia e incide marcadamente en la obtención de frutos de elevada calidad (Cantón et al., 2003).

También habrá que tener en cuenta para determinar el momento apropiado de cosecha, el destino de los melones (mercado cercano o lejano) y el tiempo de almacenamiento previsto. Para prolongados periodos de conservación se tiene que sacrificar algo de calidad cosechando en un estado de madurez no óptimo para su consumo (Cadahia et al., 1989).

La cosecha se realiza entre los 90 y 110 días después de la siembra, dependiendo del tipo de melón. La cosecha se debe realizar de forma manual, utilizando tijeras aunque en muchos casos no son necesarios por la facilidad de desprendimiento del melón en estado adecuado.
de madurez. Se recomienda no dejar un pedúnculo largo con el fin de evitar lastimar a otros frutos dentro de la caja de exportación. La cosecha se debe realizar en los horarios de menor temperatura ambiental (por la mañana o atardecer), para evitar que los frutos tengan una temperatura muy alta. Además, es importante que los frutos, una vez cosechados, no se expongan al sol hasta que sean llevados al lugar de empaque (Cantón et al., 2003).

La mejor forma de evitar que el melón sufra quemaduras por sol es que se cubra con su propia hoja. También se puede emplear cal con engrudo para proteger al fruto (Bretones Castillo, 1991).

Grados de Madurez Comercial:

- **Maduro fisiológicamente, inmaduro para consumo:** color de fondo blanco con tintes verdosos, sin aroma característico, piel vellosa y todavía no cerosa. La norma de California establece como índice de cosecha legal un mínimo de 10% de sólidos solubles totales (10°Brix) (Cadahia et al., 1989).
- **Maduro fisiológicamente y en proceso de maduración de consumo:** color de fondo blanco con trazas de tintes verdes, piel ligeramente cerosa, punta floral firme que no cede bajo presión manual, ligero aroma o sin aroma. Comercialmente, es el estado de madurez preferido (Cadahia et al., 1989).
- **Maduro (con madurez de consumo):** color de fondo blanco cremoso con tintes amarillos, piel claramente cerosa, aroma característico notable, la punta floral cede ligeramente a la presión manual (Cadahia et al., 1989).

V.19. CALIDAD DEL FRUTO

Las características que se consideran determinantes en la calidad de los frutos son la red (en el caso de cantaloupe), la consistencia dura de los mismos, los sólidos solubles (azúcar), el grosor y el color de la carne, y las dimensiones de la cavidad que contiene las semillas. La forma en que se heredan las características internas de la fruta es cuantitativa y las cualidades determinadas cuantitativamente se ven afectadas profundamente por las condiciones ambientales, y las desviaciones del ambiente de su condición óptima evitan que el fruto alcance todo su potencial de calidad. El "ambiente" incluye todos los factores que afectan el crecimiento de la guía y desarrollo de los frutos, el suelo, las condiciones del tiempo, organismos patógenos, plagas y prácticas culturales y de manejo (Cadahia et al., 1989).

V.19.1 LA RED EN LOS CANTALOUPES.

El característico retículo suberoso que cubre la superficie de los frutos de melón cantaloupe
es una característica heredada cuantitativamente. Hay dos tipos básicos de redes en los melones cantaloupe que no poseen suturas. Uno es el tipo cordel o pronunciado y el otro es la red fina y aplanada. El fruto comienza su desarrollo como un óvulo fecundado, que ha resultado de la polinización por las abejas. La fecundación Inicia un periodo de intenso desarrollo y una alta demanda de nutrimentos por parte de la planta especialmente fósforo y potasio. Unas dos semanas después de la polinización, la superficie del ovario en crecimiento se comienza a agrietar alrededor del extremo apical. Estas cuarteaduras se vuelven más extensas durante los 7 a 10 días siguientes, y a los 21 días de la fecundación toda la superficie del fruto está ya cubierta con una malla de fisuras. Al crecer la fruta, ciertas células se dividen para formar una capa de tejido suberoso debajo de las fisuras superficiales. Este tejido llega a aflorar a través de las fisuras por sobre la superficie de la cáscara y forma la red del cantaloupe. El desarrollo de la red continúa con el desarrollo del fruto hasta el momento en que se arranca de la guía. Es importante tener frutas con redes atractivas y por lo general se debe ir dando vuelta a la fruta para que ésta se forme uniformemente en el campo. Por el contrario, las condiciones opuestas (como es una nutrición, humedad o temperaturas deficientes o excesivas, restricción del sistema radicular, compactación, salinidad o falta de aireación del suelo, o presencia de nematodos, insectos o daños causados por las pasadas de cultivadora, reducción de la capacidad fotosintética debido a la poca área foliar por crecimiento deficiente, infección por virus o enfermedades foliares, daño de insectos o de prácticas culturales, toxicidad de productos químicos plaguicidas o competencia de malezas como el *Cyperus rotundus.*) disminuyen la formación del material suberoso, y la malla será menos deseable y atractiva para el consumidor.

V.19.2. SÓLIDOS SOLUBLES.

El nivel de los sólidos solubles (azúcares) en el fruto depende de la capacidad de la planta para producir suficientes compuestos por medio de la fotosíntesis para satisfacer sus propias necesidades y producir exceso que se almacene en el fruto, por eso es importante que durante el llenado del fruto la planta tenga suficiente follaje que le permita tener una máxima actividad fotosintética, y es necesario que durante el llenado del fruto se reduzca la fertilización nitrogenada que estimularía el crecimiento de las guías y por ende se minimice el llenado del fruto. Dentro de los factores que pueden limitar la producción y el traslado de azúcares o foto asimilados hacia la fruta así como en el color de la fruta podemos citar: reducción del área foliar por causa de hojas pequeñas, ataque de insecto, incidencia de enfermedades del follaje, daño mecánico, sombreado de plantas, exceso de frío, polvo, suelo seco, enfermedades del suelo que afectan directamente a la raíz, daños físicos en los tejidos conductores. También el contenido de azúcar baja cuando se realizan riegos largos e intensos mientras se llena el mismo, por lo que se recomienda bajar la frecuencia de riego por lo menos una semana antes de comenzar la cosecha, sobre todo en los cantaloupes.
V.19.3. TAMAÑO DE LA CAVIDAD Y GROSOR DE LA PULPA.

La pulpa gruesa requiere de un crecimiento constante durante el llenado del fruto, una pulpa bien desarrollada depende de una planta libre de problemas, bien nutrida y de un microclima óptimo.

En cuanto al tamaño de la cavidad podemos destacar que ésta depende directamente del grosor de la pulpa, obviamente a diferentes grosores de la pulpa obtendremos diferentes tamaños de la cavidad, aquellas que no presenten cavidades sólidas son más propensas a ser dañadas durante el manejo de la cosecha y en la pos-cosecha, una adecuada fertilización con Calcio hace que las paredes celulares sean más fuertes por lo que se obtienen cavidades más sólidas en las frutas.

V.20. POSTCOSECHA.

V.20.1. Melón Cantaloupe.

-**Calidad:** bien formados, casi esféricos y de apariencia uniforme. Cicatriz del pedúnculo lisa, sin adherencias de tallo (tallo-unido) que sugiera cosecha prematura. Ausencia de cicatrices, quemaduras de sol o defectos de superficie. Firme, sin evidencias de magulladuras o deterioro excesivo. Se ve pesado para su tamaño y con la cavidad interna firme, sin semillas sueltas o acumulación de líquido (Giambanco, 1997).

La distinción entre grados de calidad se basa principalmente en la apariencia externa y en el contenido de sólidos solubles. Con un mínimo de 11% de sólidos solubles se consideran de "muy buena calidad interna" y 9% "buena calidad interna". Un refractómetro calibrado que mida °Brix se acepta como instrumento para la determinación estándar de los sólidos solubles (Giambanco, 1997).

-**Temperatura óptima:** 2.2 - 5°C. La vida de almacenamiento es hasta de 21 días a 2.2°C, pero la calidad sensorial puede reducirse. Generalmente, se pueden esperar de 12 a 15 días como vida postcosecha normal dentro del intervalo óptimo de temperatura. En ocasiones, durante el almacenamiento de corto plazo o el transporte, se aplican temperaturas inferiores, fuera de este intervalo, pero pueden dar lugar a daño por frío después de algunos días (Giambanco, 1997).

-**Humedad relativa óptima:** 90-95%; la humedad relativa alta es esencial para maximizar la calidad postcosecha y prevenir la desecación. La pérdida de agua puede ser significativa a través de las áreas dañadas o maltratadas de la redecilla del fruto. Los períodos prolongados en humedades superiores al intervalo óptimo o la condensación puede estimular el crecimiento de mohos en la superficie o en la cicatriz del pedúnculo (Giambanco, 1997).
-Tasa de producción de etileno:

- Fruta intacta 40 – 80 µL / kg·h a 20 ºC.
- Producto pre-cortado 7-10 µL / kg·h a 5 ºC.

- Efectos del etileno: los melones Cantaloupe son moderadamente sensibles al etileno presente en el ambiente por lo que la sobremaduración puede ser un problema durante su distribución y almacenamiento de corto plazo (Giambanco, 1997).

- Efectos de las atmósferas controladas (A.C.): el almacenamiento o el transporte en AC, solamente ofrece beneficios moderados en la mayoría de las condiciones. En períodos prolongados de tránsito (14-21 días) se reportan los siguientes efectos benéficos de las AC en los melones Cantaloupe: retraso de la maduración, disminución de la respiración y de la pérdida asociada de azúcares e inhibición de las pudriciones y de los mohos de la superficie. Las condiciones más aceptadas son 3% O₂ y 10% CO₂ a 3 ºC. Las concentraciones elevadas de CO₂ (10-20%) son toleradas, pero producen efervescencia en la pulpa. Este sabor carbonatado se pierde cuando la fruta se transfiere al aire (Giambanco, 1997).

Las bajas concentraciones de O₂ (<1%) o altas de CO₂ (> 20%) alteran la maduración y causan sabores y olores desagradables y otros defectos (Giambanco, 1997).

- Fisiopatías: el daño por frío (chilling injury) comúnmente ocurre después del almacenamiento a temperaturas inferiores a 2°C durante algunos días. La sensibilidad al daño por frío disminuye a medida que la madurez fisiológica o la de consumo aumentan. Los síntomas del daño por frío incluyen picado o depresiones superficiales, incapacidad para madurar normalmente, sabores desagradables y mayor incidencia de pudriciones en la superficie (Giambanco, 1997).

- Enfermedades: las enfermedades pueden ser una causa importante de pérdidas postcosecha dependiendo de la estación del año, región productora y prácticas de manejo. Normalmente, las pudriciones o las lesiones de la superficie son causadas por los hongos fitopatógenos Alternaria, Penicillium, Cladosporium, Geotrichum, Rhizopus, y en menor grado Mucor. El tratamiento con aire caliente o la inmersión en agua caliente (55°C entre medio minuto y un minuto) han sido efectivos para prevenir el moho de la superficie, pero no se les ha aplicado ampliamente a nivel comercial (Giambanco, 1997).

- Consideraciones especiales: el rápido enfriamiento inmediatamente después de la cosecha es esencial para conservar una calidad óptima postcosecha. El punto final del enfriamiento es comúnmente 10°C pero 4°C es más deseable. El enfriamiento con aire
forzado es la práctica más común, aunque el hidro-enfriamiento también se utiliza (Giambanco, 1997).

V.21. PLAGAS Y ENFERMEDADES DEL MELÓN.

V.21.1. PLAGAS.

-Araña roja (tetranychus urticae (koch) (acarina: tetranychidae), t. turkestani (ugarov & nikolski) (acarina: tetranychidae) y t. ludeni (tacher) (acarina: tetranychidae))

La primera especie citada es la más común en los cultivos hortícolas protegidos, pero la biología, ecología y daños causados son similares, por lo que se abordan las tres especies de manera conjunta (Agrobio, 2007).

Se desarrolla en el envés de las hojas causando decoloraciones, punteaduras o manchas amarillentas que pueden apreciarse en el haz como primeros síntomas. Con mayores poblaciones se produce desecación o incluso de foliación. Los ataques más graves se producen en los primeros estados fenológicos. Las temperaturas elevadas y la escasa humedad relativa favorecen el desarrollo de la plaga. En judía y sandía con niveles altos de plaga pueden producirse daños en los frutos (Agrobio, 2007).

Control preventivo y técnicas culturales:

-Desinfección de estructuras y suelo previa a la plantación en parcelas con historial de araña roja.
-Eliminación de malas hierbas y restos de cultivo.
-Evitar los excesos de nitrógeno.
-Vigilancia de los cultivos durante las primeras fases del desarrollo.

Control biológico mediante enemigos naturales:

-Principales especies depredadoras de huevos, larvas y adultos de araña roja: Amblyseius californicus, Phytoseiulus persimilis (especies autóctonas y empleadas en sueltas), Feltiella acarisuga (especie autóctona).

Control químico:

Materias activas: abamectina, aceite de verano, acrinatrin, amitraz, amitraz + bifentrin, bifentrin, bromopropilato, dicofol, dicofol + tetradifon, dicofol + hexitiazox, dinobuton,
dinobuton + tetradifon, dinobuton + azufre, fenbutestan, fenpiroximato, hexitiazox, propargita, tebufenpirad, tetradifón (Agrobio, 2007).

-Mosca blanca (Trialeurodes vaporariorum (west) (homoptera: aleyrodidae) y bemisia tabaci (genn.) (Homoptera: aleyrodidae))

Las partes jóvenes de las plantas son colonizadas por los adultos, realizando las puestas en el envés de las hojas. De éstas emergen las primeras larvas, que son móviles. Tras fijarse en la planta pasan por tres estados larvarios y uno de pupa, este último característico de cada especie. Los daños directos (amarillamientos y debilitamiento de las plantas) son ocasionados por larvas y adultos al alimentarse, absorbiendo la savia de las hojas.

Los daños indirectos se deben a la proliferación de negrilla sobre la melaza producida en la alimentación, manchando y deprecianto los frutos y dificultando el normal desarrollo de las plantas. Ambos tipos de daños se convierten en importantes cuando los niveles de población son altos. Otros daños indirectos se producen por la transmisión de virus. *Trialeurodes vaporariorum* es transmisora del virus del amarillamiento en cucurbitáceas. *Bemisia tabaci* es potencialmente transmisora de un mayor número de virus en cultivos hortícolas y en la actualidad actúa como transmisora del Virus del rizado amarillo de tomate (TYLCV), conocido como “virus de la cuchara” (Agrobio, 2007).

Control preventivo y técnicas culturales:
- Colocación de mallas en las bandas de los invernaderos.
- Limpieza de malas hierbas y restos de cultivos.
- No asociar cultivos en el mismo invernadero.
- No abandonar los brotes al final del ciclo, ya que los brotes jóvenes atraen a los adultos de mosca blanca.
- Colocación de trampas cromáticas amarillas.

Control biológico mediante enemigos naturales:
Entre los enemigos naturales, parásitos de larvas de mosca blanca, se encuentran las siguientes especies:
— *Encarsia formosa*, avispa parásita muy eficaz contra *T. vaporariorum*, así como: *Encarsia lutea*, *E. transvena*, *E. tricolor* y *Eretmocerus mundus*.
Contra *Bemisia tabaci* los depredadores:
— *Eretmocerus mundus*, *E. californicus*, *E. sineatis*, *E. eremicus*, *Encarsia lutea*, *E. transvena*, *Cyrtopeltis tenuis*, *Amblyseius swirskii*.

Control químico:
Aplicar pesticidas que contengan alguna de estas materias activas:
— Bifentrin, lambda cihalotrin, alfa cipermetrin, azadiractin, benfuracarb, buprofezin, imidacloprid, malation, pymetrocina, piridaben, tiacloprid, zeta-cipermetrin.

-Pulgón (Aphis gossypii (Sulzer) (homoptera: aphididae) y myzus persicae (glover) (homoptera: aphididae)).

Son las especies de pulgón más comunes y abundantes en los invernaderos. Presentan polimorfismo, con hembras aladas y ápteras de reproducción vivípara. Las formas ápteras del primero presentan sifones negros en el cuerpo verde o amarillento, mientras que las de Myzus son completamente verdes (en ocasiones pardas o rosadas). Forman colonias y se distribuyen en focos que se dispersan, principalmente en primavera y otoño, mediante las hembras aladas (Agrobio, 2007).

Control preventivo y técnicas culturales:

- Colocación de mallas en las bandas del invernadero.
- Eliminación de malas hierbas y restos del cultivo anterior.
- Colocación de trampas cromáticas amarillas.

Control biológico:
Existen muchos enemigos naturales de los pulgones. A menudo puede apreciarse un cierto control de la plaga, aunque en la mayoría de los casos no resulta suficiente. Esto es debido, en parte, a los tratamientos insecticidas que suelen eliminar toda la entomofauna auxiliar (Agrobio, 2007).

Los depredadores de pulgones más importantes son:

• La que vulgarmente se le conoce como “mariquita”, coleóptero, cuya especie Coccinella septempunctata es la más común, así como el coleóptero Adalia bipunctata (Agrobio, 2007).

• Las crisopas, insectos del orden neuróptera (Chrysoperla carnea). Al igual que el anterior no sólo es depredador de pulgones sino que también combate otras plagas, como es el caso de orugas de lepidópteros (Agrobio, 2007).

• Aphidoletes aphidimyza, díptero depredador que actúa principalmente por la noche. Sus larvas perforan y succionan el cuerpo del pulgón (Agrobio, 2007).

Entre las especies parásitas se han comercializado varias: Lysiphlebus testaceipes, Aphidius matricariae y A. colemani; aunque con esta última la presencia de hormigas pueden devorarlas, por lo que se aconseja tratar con algún aficida y posteriormente hacer sueltas del parásito (Agrobio, 2007).
Productos biológicos.- Existen preparados de los parásitos: *A. matricarie, A. colemani, A. aphidimyza*, así como del hongo patógeno *Verticillium lecanii*.

Control químico:
Al observarse los primeros focos de ataque y, principalmente, si se observan plántulas afectadas por virosis, hay que eliminar dichas plantas y tratar rápidamente dichos focos alcanzando bien el envés de las hojas con alguno de los productos que contengan las materias activas que a continuación se relacionan autorizadas en melón: Alfacipermetrin, azadiractin, cipermetrin, benfuracarb, bifentrín, carbosulfan, zeta cipermetrin, cipermetrin más malathion, imidaclorprid, deltametrín, fenamifos, lambda cihalotrin, metil pirimifos, pirimicarb (Agrobio, 2007).

Si hay presencia de plaga parasitada dirigir los tratamientos a otras zonas al fin de evitar la eliminación de dicha fauna auxiliar.

Trips (Frankliniella occidentalis (Pergande) (Thysanoptera: thripidae))

Los adultos colonizan los cultivos realizando las puestas dentro de los tejidos vegetales en hojas, frutos y, preferentemente, en flores (son florícolas), donde se localizan los mayores niveles de población de adultos y larvas nacidas de las puestas (Rodríguez *et al.*, 1989).

Los daños directos se producen por la alimentación de larvas y adultos, sobre todo en el envés de las hojas, dejando un aspecto plateado en los órganos afectados que luego se necrosan. Estos síntomas pueden aparecerse cuando afectan a frutos y cuando son muy extensos en hojas. El daño indirecto es el que acusa mayor importancia y se debe a la transmisión del virus del bronceado del tomate (TSWV) (Rodríguez *et al.*, 1989).

Control preventivo y técnicas culturales:
- Colocación de mallas en las bandas del invernadero.
- Limpieza de malas hierbas y restos de cultivo.
- Colocación de trampas cromáticas azules.

Control biológico:
Se han empleado preferentemente los ácaros depredadores: *Amblyseius barkeri, A. cucumeris, A. swirskii, Hypoaspis miles* y *Macrolopus caliginosus* para el control biológico de *trips*, y se ha observado un control natural realizado por insectos depredadores del género *Orius: Orius laevigatus* y *O. majusculus*, chinches depredadoras incluidos como alternativa en los programas de control integrado. (Rodríguez *et al.*, 1989).
Preparados comerciales de Heterohabditis bacteriophora y Steinernema feltiae, organismos biológicos compuestos por millones de larvas de nematodos que parasitan las larvas de trips. (Rodríguez et al., 1989).

Control químico:
Los insecticidas aconsejados para el control químico del trips en melón son los productos fitosanitarios que contienen alguna de las siguientes materias activas: Acrinatrin, azadiractin, malathion, fenamifos, fosalon, formetanato, spinosad, benfuracarb.

-Minadores de hoja (Liriomyza trifolii (burgess) (32íptera: agromyzidae), liriomyza bryoniae (32íptera: agromyzidae), liriomyza strigata (32íptera: agromyzidae), liriomyza huidobrensis (32íptera: agromyzidae))

Las hembras adultas realizan las puestas dentro del tejido de las hojas jóvenes, donde comienza a desarrollarse una larva que se alimenta del parénquima, ocasionando las típicas galerías. La forma de las galerías es diferente, aunque no siempre distingible, entre especies y cultivos. Una vez finalizado el desarrollo larvario, las larvas salen de las hojas para pupar, en el suelo o en las hojas, para dar lugar posteriormente a los adultos (Rodríguez et al., 1989).

Control preventivo y técnicas culturales:
- Colocación de mallas en las bandas del invernadero.
- Eliminación de malas hierbas y restos de cultivo.
- En fuertes ataques, eliminar y destruir las hojas bajas de la planta.
- Colocación de trampas cromáticas amarillas.

Control biológico mediante enemigos naturales:
- Especies parasitoides autóctonas: Diglyphus isaea, Diglyphus minoeus, Diglyphus crassinervis, Chrysonotomyia 32ormosa, Hemiptarsenus zihalisebessi.
- Especies parasitoides empleadas en sueltas: Diglyphus isaea.

Control químico:
- Materias activas: abamectina, ciromazina, pirazofos y aceite de verano 75%.

- Orugas (Spodoptera exigua (hübner) (lepidoptera: noctuidae), spodoptera litoralis (boisduval) (lepidoptera: noctuidae), heliothis armigera (hübner) (lepidoptera: noctuidae), heliothis peltigera (dennis y schiff) (lepidoptera: noctuidae), chrysodeisis chalcites (esper) (lepidoptera: noctuidae), autographe gamma (l.) (lepidoptera: noctuidae))

La principal diferencia entre especies en el estado larvario se aprecia en el número de falsas patas abdominales (5 en Spodoptera y Heliothis y 2 en Autographe y Chrysodeixis), o en la
forma de desplazarse en *Autographa* y *Chrysodeixis* arqueando el cuerpo (orugas camello). La presencia de sedas (“pelos” largos) en la superficie del cuerpo de la larva de *Heliothis*, o la coloración marrón oscuro, sobre todo de patas y cabeza, en las orugas de *Spodoptera litoralis*, también las diferencia del resto de las especies (Rodríguez *et al.*, 1989).

La biología de estas especies es bastante similar, pasando por estados de huevo, 5-6 estados larvarios y pupa. Los huevos son depositados en las hojas, preferentemente en el envés, en plastones con un número elevado de especies del género *Spodoptera*, mientras que las demás lo hacen de forma aislada. Los daños son causados por las larvas al alimentarse. En *Spodoptera* y *Heliothis* la pupa se realiza en el suelo y en *Chrysodeixis chalcites* y *Autographa gamma*, en las hojas. Los adultos son polillas de hábitos nocturnos y crepusculares (Rodríguez *et al.*, 1989).

Los daños pueden clasificarse de la siguiente forma: daños ocasionados a la vegetación (*Spodoptera*, *Chrysodeixis*), daños ocasionados a los frutos (*Heliothis*, *Spodoptera* y *Plusias*) y daños ocasionados en los tallos (*Heliothis* y *Ostrinia*) que pueden llegar a cegar las plantas.

Control preventivo y técnicas culturales:
- Colocación de mallas en las bandas del invernadero.
- Eliminación de malas hierbas y restos de cultivo.
- En fuertes ataques, eliminar y destruir las hojas bajas de la planta.
- Colocación de trampas de feromonas y trampas de luz.
- Vigilar los primeros estados de desarrollo de los cultivos, en los que se pueden producir daños irreversibles.

Control biológico mediante enemigos naturales:
- Parásitos autóctonos: *Apanteles plutellae*.
- Patógenos autóctonos: Virus de la poliedrosis nuclear de *S. exigua*.
- Productos biológicos: *Bacillus thuringiensis*.

Control químico:
Para su control, además de realizar las medidas preventivas y culturales indicadas; pueden darse tratamientos con algunas de estas materias activas aconsejadas en melón: Alfacipermetrin, azadiractin, bifentrin, cipermetrin, lambda cihalotrin, malathion, triclorfon (Rodríguez *et al.*, 1989).

- **Nemátodos** (*Meloidogyne javanica*, *m. arenaria*, *m. incognita*. (*Tylenchida: heteroderidae*))

Afectan prácticamente a todos los cultivos hortícolas, produciendo los típicos nódulos en
las raíces que le dan el nombre común de “batatilla”. Penetran en las raíces desde el suelo. Las hembras al ser fecundadas se llenan de huevos tomando un aspecto globoso dentro de las raíces. Esto unido a la hipertrofia que producen en los tejidos de las mismas, da lugar a la formación de los típicos “rosarios”. Estos daños producen la obstrucción de vasos e impiden la absorción por las raíces, traduciéndose en un menor desarrollo de la planta y la aparición de síntomas de marchitez en verde en las horas de más calor, clorosis y enanismo. Se distribuyen por rodales o líneas y se transmiten con facilidad por el agua de riego, con el calzado, con los aperos y con cualquier medio de transporte de tierra. Además, los nematodos interaccionan con otros organismos patógenos, bien de manera activa (como vectores de virus), bien de manera pasiva facilitando la entrada de bacterias y hongos por las heridas que han provocado (Rodríguez et al., 1989).

Control preventivo y técnicas culturales:
- Utilización de variedades resistentes.
- Desinfección del suelo en parcelas con ataques anteriores.
- Utilización de plántulas sanas.

Control biológico mediante enemigos naturales:
- Productos biológicos: preparado a base del hongo Arthrobotrys irregularis.

Control por métodos físicos.
- Esterilización con vapor.
- Solarización, que consiste en elevar la temperatura del suelo mediante la colocación de una lámina de plástico transparente sobre el suelo durante un mínimo de 30 días.

Control químico:
Como métodos preventivos y en parcelas afectadas es necesaria la desinfección del suelo antes de la plantación, el control preventivo en los semilleros y evitar su propagación en el agua de riego, aperos, etc.

Con los cultivos establecidos emplear:
• Oxamilo, aplicándolo en riego localizado
• Tetratiocarbamato de sodio. Puede emplearse en presiembra, o con el cultivo ya establecido.

Sin cultivo: Aplicar los nematicidas fumigantes siguientes: Dicloropropeno, dazomet, etc. o con los nematicidas no fumigantes: Fenamifos, etoprofos, cadusafos, benfuracarb, etc.
V.21.2. ENFERMEDADES.

-“Ceniza” u oídio de las cucurbitáceas (Sphaerotheca fuliginea (schelecht) pollacci. ascómycetes: erysiphales))

Los síntomas que se observan son manchas pulverulentas de color blanco en la superficie de las hojas (haz y envés) que van cubriendo todo el aparato vegetativo llegando a invadir la hoja entera, también afecta a tallos y pecíolos e incluso frutos en ataques muy fuertes. Las hojas y tallos atacados se vuelven de color amarillento y se secan. Las malas hierbas y otros cultivos de cucurbitáceas, así como restos de cultivos serían las fuentes de inóculo y el viento es el encargado de transportar las esporas y dispersar la enfermedad. Las temperaturas se sitúan en un margen de 10-35ºC, con el óptimo alrededor de 26ºC. La humedad relativa óptima es del 70% (Gómez Vázquez, 1998).

En melón se han establecido tres razas (Raza 1,2 y 3,) destacándose en Málaga y Almería las razas 1 y 2.

Control preventivo y técnicas culturales:
- Eliminación de malas hierbas y restos de cultivo.
- Utilización de plántulas sanas.
- Realizar tratamientos a las estructuras.
- Utilización de las variedades de melón con resistencias parciales a las dos razas del patógeno.

Control químico:
Como materias activas recomendadas en melón se enumeran las siguientes: Azufre coloidal, azufre micronizado, azufre mojable, azoxistrobin, bupirimato, ciproconazol, fenarimol, flutriazol, penconazol, metil tiofanato, quinometionato, tetraconazol, triadimenol, triflumizol, trifloxistrobin.

Durante los tratamientos en invernadero hay que tener precaución cuando se aplique azufre, pues a dosis elevadas y con temperaturas superiores a 30º C puede resultar fitotóxico.

-Mildiu (Pseudoperonospora cubensis (Berck & Curtis) Rostovtsev)

Los síntomas aparecen sólo en hojas como manchas amarillentas de forma anulosa delimitadas por los nervios. En el envés se observa un fieltro gris violáceo que corresponde a los esporangióforos y esporangios del hongo. Posteriormente las manchas se necrosan tomando aspecto apergaminado y llegando a afectar a la hoja entera que se seca, quedando adherida al tallo (Gómez Vázquez, 1998).

Fuentes primarias: cucurbitáceas silvestres o cultivadas.
Dispersión: por medio de vientos, lluvias, gotas de condensación, etc.
Condiciones óptimas de desarrollo: humedad relativa elevada, es indispensable un período de agua líquida en la hoja, temperatura óptima entre 20 y 25ºC, aunque los límites se sitúan entre 8 y 27ºC (Gómez Vázquez, 1998).

Control preventivo y técnicas culturales:
- Eliminación de malas hierbas y restos de cultivo.
- Evitar exceso de humedad, ventilando el invernadero.
- Marco de plantación no muy denso.
- Eliminar las plantas afectadas al final del cultivo.

Control químico:
Como normas generales, para las plantas atacadas por mildiu se llevan a cabo:
• Aplicaciones a los primeros síntomas con productos curativos de acción sistémica.
• Tratamientos preventivos cuando se prevean condiciones climáticas propicias para la infección y desarrollo del hongo basado en ditiocarbamatos y cúpricos (maneb, mancozeb, zineb, propineb, cobre, etc.), y tratamientos curativos a partir de: Ciazofamida, cimoxanilo, clortalonil, azoxistobin, toilfluanida, cimoxanilo más mancozeb.

La llegada de las materias activas con acción sistémica. Por ejemplo: Cimoxanilo, metalaxil, etc. han supuesto un paso importante para su control ya que algunos fungicidas de contacto han perdido efectividad (Gómez Vázquez, 1998).

-Fusarium oxysporum f.sp. melonis (L & C) Snyder & Hansen

Se presentan dos tipos de sintomatologías según cepas:

Tipo Yellow: amarilleo de hojas. Comienzan con el amarilleo de venas en un lado de las hojas que avanza afectando al limbo. En tallos se observan estrías necróticas longitudinales de las que exuda goma, posteriormente el hongo esporula sobre las zonas necróticas formando esporodoquios rosados. En la sección transversal del tallo se observa un oscurecimiento de los vasos (Reche Mármol, 1991).

Tipo Wilt: marchitez en verde súbita de las plantas sin que amarilleen o desarrollen color. Temperatura óptima de desarrollo: 18-20ºC. Si son superiores a 30ºC disminuye la gravedad. En Almería se han encontrado hasta ahora las razas 0 (Wilt y Yellow), 1 (Wilt y Yellow), 2 (Yellow), 1-2 (Wilt y Yellow) (Reche Mármol, 1991).

Control preventivo y técnicas culturales
- La rotación de cultivos reduce paulatinamente el patógeno en suelos infectados.
- Eliminar las plantas enfermas y los restos del cultivo.
- Utilizar semillas certificadas y plántulas sanas.
-Utilización de variedades resistentes
-Desinfección de las estructuras y útiles de trabajo
-Solarización.

Control químico:
Desinfecciones en plena vegetación: Utilizando alguno de los productos: Ditianona, etridiazol, himezazol, metil tiofanato, procloraz, etc. situándolos en la zona del cuello de la planta por medio del riego localizado.

-Chancro gomoso del tallo (Didymella bryoniae (Auersw) rem. ascomycetes: dothideales)

En plántulas afecta principalmente a los cotiledones en los que produce unas manchas parduscas redondeadas, en las que se observan puntitos negros y marrones distribuidos en forma de anillos concéntricos. El cotiledón termina por secarse, produciendo lesiones en la zona de la inserción de éste con el tallo. Los síntomas más frecuentes en melón, sandía y pepino son los de “chancro gomoso del tallo” que se caracterizan por una lesión beige en tallo, recubierta de picnidios y/o peritecas, y con frecuencia se producen exudaciones gomosas cercanas a la lesión. En la parte aérea provoca la marchitez y muerte de la planta. Puede transmitirse por semillas. Los restos de cosecha son una fuente primaria de infección y las esporas pueden sobrevivir en el suelo o en los tallos y en la estructura de los invernaderos, siendo frecuentes los puntos de infección en las heridas de podas e injertos. La temperatura de desarrollo de la enfermedad es de 23-25ºC, favorecido con humedades relativas elevadas, así como exceso de abono nitrogenado. Las altas intensidades lumínicas la disminuyen (Reche Mármol, 1991).

Control preventivo y técnicas culturales:
-Utilizar semilla sana.
-Eliminar restos de cultivo tanto alrededor como en el interior de los invernaderos.
-Desinfección de las estructuras del invernadero.
-Control de la ventilación para disminuir la humedad relativa.
-Evitar exceso de humedad en suelo. Retirar goteros del pie de la planta.
-Deben sacarse del invernadero los frutos infectados y los restos de poda.
-Realizar la poda correctamente.

Control químico:
-Materias activas: benomilo, metiltiofanato, imazalil, procimidona.

-Virus de las venas amarillas del pepino (Cucumber vein yellowing virus) (CVYV)
Este virus afecta a especies de la familia Cucurbitaceae: pepino, calabacín, sandía y melón. Existen dos cepas: CVYV-Jor, inducen síntomas similares en pepino y melón (amarillo de las venas), aunque el CVYV-Jor causa más enanismo en pepino.

Los síntomas de este virus en melón son el amarillo de las venas, aunque dependiendo del momento de infección, puede presentarse en toda la planta, así como un menor desarrollo de la misma.

Si este virus se asocia al virus del enanismo amarillo del pepino (cucurbit yellow stunting disorder closterovirus) (CYSDV), produce un sinergismo que potencia los síntomas de ambos virus.

La transmisión del virus se realiza por el insecto vector Bemisia tabaci de forma semi-persistente. El insecto retiene el virus durante 6 horas y tiene un periodo de latencia de 75 minutos. El virus necesita de 15 a 20 insectos por planta como mínimo para su transmisión. El ciclo de vida de la mosca blanca en cultivo de pepino, a temperatura constante, puede completarse en 17.8 días a 32°C y 38.2 días a 20°C (Reche Mármol, 1991).

Control:
- Utilización de variedades resistentes.
- Vigilancia y control del vector en estados tempranos del cultivo y semilleros.
- Colocación de malla en las bandas y cumbereras del invernadero con una densidad mínima de 10 x 20 hilos/cm², excepto en aquellos casos en los que no permitan un adecuada ventilación del invernadero.
- Colocación de doble puerta o puerta y malla (mínimo 10 x 20 hilos/cm²) en las entradas del invernadero. La estructura del invernadero debe mantener una hermeticidad completa que impida el paso del insecto vector.
- Colocación de trampas cromotrópicas amarillas para seguimiento y captura de mosca blanca.
- Eliminar los restos vegetales y malas hierbas en el invernadero y alrededores, dejando más de un metro de perímetro limpio de malas hierbas.
- Arrancar y eliminar las plantas afectadas por virus y las colindantes al inicio del cultivo y antes del cuaje.
- Realizar tratamientos con insecticidas específicos contra mosca blanca antes de retirar los restos vegetales de la parcela.
- En amplias zonas de cultivo se debe dejar un periodo de descanso entre un cultivo de curcubitáceas y el siguiente para romper el ciclo de la mosca blanca.
De los principales países productores de melón (Cuadro V.22.1), China ocupa el primer lugar con el 63% de la producción mundial y una producción de más de 17 millones de toneladas al año, mientras que Estados Unidos produce 1 millón de toneladas y México se encuentra en el décimo lugar. Turquía y la República Islámica de Irán poseen cada uno el 7% y 5%, respectivamente, de la producción mundial; Turquía produce 1,700,000 toneladas en una superficie de 102,000 hectáreas, lo cual lo coloca como el segundo productor mundial de este producto, mientras que España produce 870,900 toneladas, en una superficie 27,500 hectáreas (F.A.O., 2013).

Cuadro V.22.1. PRINCIPALES PAÍSES PRODUCTORES DE MELON (Toneladas)

<table>
<thead>
<tr>
<th>PAÍSES</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>China, Continental</td>
<td>15,991,000</td>
<td>12,153,387</td>
<td>17,181,000</td>
<td>17,181,000</td>
<td>17,500,000</td>
</tr>
<tr>
<td>Turquía</td>
<td>1,749,935</td>
<td>1,679,191</td>
<td>1,611,695</td>
<td>1,647,988</td>
<td>1,708,415</td>
</tr>
<tr>
<td>Irán (República Islámica del)</td>
<td>1,332,066</td>
<td>1,278,542</td>
<td>1,387,776</td>
<td>1,400,000</td>
<td>1,450,000</td>
</tr>
<tr>
<td>Egipto</td>
<td>923,718</td>
<td>918,360</td>
<td>1,076,770</td>
<td>1,038,412</td>
<td>1,007,845</td>
</tr>
<tr>
<td>India</td>
<td>822,715</td>
<td>812,895</td>
<td>900,523</td>
<td>948,869</td>
<td>1,000,000</td>
</tr>
<tr>
<td>Estados Unidos de América</td>
<td>1,042,530</td>
<td>1,037,180</td>
<td>1,036,040</td>
<td>1,016,400</td>
<td>925,060</td>
</tr>
<tr>
<td>España</td>
<td>1,042,439</td>
<td>984,786</td>
<td>926,693</td>
<td>871,996</td>
<td>870,900</td>
</tr>
<tr>
<td>Marruecos</td>
<td>736,800</td>
<td>887,005</td>
<td>567,301</td>
<td>777,605</td>
<td>717,602</td>
</tr>
<tr>
<td>Italia</td>
<td>653,309</td>
<td>621,267</td>
<td>666,383</td>
<td>536,229</td>
<td>461,242</td>
</tr>
<tr>
<td>México</td>
<td>582,288</td>
<td>552,371</td>
<td>561,681</td>
<td>564,366</td>
<td>574,976</td>
</tr>
</tbody>
</table>

Fuente: http://faostat.fao.org/

En el panorama nacional el total de la producción es de más de 574 mil toneladas distribuidas principalmente en 7 estados (S.I.A.P., 2013). Coahuila es el principal estado productor con más de 134 mil toneladas de melón, seguido de Michoacán y Sonora que producen más de 100 mil toneladas de producto y Chiapas se encuentra en la posición 18 con tan solo 424 toneladas. (Cuadro V.22.2)

Cuadro V.22.2. PRODUCCION DE MELON EN MEXICO (Toneladas)

<table>
<thead>
<tr>
<th>Estadods</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coahuila</td>
<td>104,507.45</td>
<td>121,404.30</td>
<td>126,150.76</td>
<td>119,620.25</td>
<td>134,175.67</td>
</tr>
<tr>
<td>Michoacán</td>
<td>110,819.27</td>
<td>110,924.85</td>
<td>117,355.70</td>
<td>95,062.33</td>
<td>100,025.16</td>
</tr>
<tr>
<td>Sonora</td>
<td>84,004.37</td>
<td>53,749.30</td>
<td>82,957.28</td>
<td>66,365.70</td>
<td>106,684.48</td>
</tr>
<tr>
<td>Guerrero</td>
<td>77,218.00</td>
<td>82,803.00</td>
<td>63,501.99</td>
<td>97,508.11</td>
<td>80,488.33</td>
</tr>
<tr>
<td>Durango</td>
<td>51,457.00</td>
<td>51,400.00</td>
<td>69,768.00</td>
<td>61,117.19</td>
<td>63,442.50</td>
</tr>
<tr>
<td>Otros</td>
<td>150,922.43</td>
<td>132,089.82</td>
<td>101,947.27</td>
<td>124,692.42</td>
<td>90,159.86</td>
</tr>
<tr>
<td>Total</td>
<td>578,928.52</td>
<td>552,371.27</td>
<td>561,681.00</td>
<td>564,366.00</td>
<td>574,976.00</td>
</tr>
</tbody>
</table>

Fuente: http://www.siap.gob.mx/
En México, el principal tipo de melón es el Cantaloupe (Cuadro V.22.3), ya que tan solo en el 2012 se produjeron 522,016.54 toneladas, en segundo lugar el valenciano con 38,486.20 y en tercero gota de miel con 5,175.05. (S.I.A.P., 2013).

Cuadro V.22.3 PRODUCCION POR TIPO DE MELON EN MEXICO (Toneladas)

<table>
<thead>
<tr>
<th>Tipo</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amargo</td>
<td>4,815.00</td>
<td>5,044.62</td>
<td>2,562.00</td>
<td>8,339.00</td>
<td>763.60</td>
</tr>
<tr>
<td>Cantaloupe</td>
<td>395,445.19</td>
<td>424,755.23</td>
<td>414,905.88</td>
<td>508,508.60</td>
<td>522,016.54</td>
</tr>
<tr>
<td>Gota de miel</td>
<td>23,244.68</td>
<td>349.00</td>
<td>7,867.96</td>
<td>2,248.00</td>
<td>5,175.05</td>
</tr>
<tr>
<td>Valenciano</td>
<td>115,676.00</td>
<td>117,857.20</td>
<td>125,447.52</td>
<td>34,767.70</td>
<td>38,486.20</td>
</tr>
</tbody>
</table>

V.23 NORMAS RELATIVAS A LOS MELONES.

REGLAMENTO (CE) nº 1615/2001 de la Comisión, de 7 de agosto de 2001, por el que se fijan las normas de comercialización de los melones y por el que se modifica el Reglamento (CE) nº 1093/97.

V.23.1 DEFINICIÓN DEL PRODUCTO

Las presentes normas se aplicarán a los melones de las variedades (cultivares) producidas a partir de la especie Cucumis melo L., destinados a su venta en estado fresco a los consumidores, con exclusión de los melones destinados a la transformación industrial.

V.23.2 DISPOSICIONES RELATIVAS A LA CALIDAD.

El objetivo de este apartado es definir los requisitos de calidad que han de reunir los melones una vez acondicionados y envasados.

A. Características mínimas.

Además de cumplir las disposiciones especiales para cada categoría y teniendo en cuenta los límites de tolerancia autorizados, los melones de todas las categorías deberán estar:

- intactos
- sanos, se descartarán las frutas podridas o deterioradas hasta un punto que imposibilite su consumo
- limpios, prácticamente libres de cuerpos extraños visibles
- frescos, de aspecto
- prácticamente libres de plagas
- prácticamente libres de daños causados por plagas
- firmes
- exentos de humedad exterior anormal
- exentos de olor y sabor extraños.
Los melones deberán haber alcanzado un grado suficiente de desarrollo y madurez.

El desarrollo y el estado de los melones deberán permitirles:

- soportar el transporte y las manipulaciones, y
- llegar en estado satisfactorio al lugar de destino.

B. Clasificación.
Los melones se dividen en las dos categorías siguientes:

i) Categoría I.
Los melones de esta categoría deberán ser de buena calidad. Deberán reunir las características propias de la variedad o tipo comercial.

Se tolerarán los defectos ligeros que se indican a continuación, siempre que no afecten al aspecto general del producto, a su calidad, a su capacidad de conservación ni a su presentación en el embalaje:

- una ligera irregularidad en la forma,
- un leve defecto de coloración (no se considerará defecto la coloración pálida de la corteza en la parte del fruto que ha estado en contacto con el suelo en la fase de crecimiento)
- ligeros defectos de la epidermis como consecuencia del rozamiento y la manipulación
- lesiones superficiales cicatrizadas alrededor del pedúnculo, que no deberán superar los 2 cm de longitud ni alcanzar la pulpa.

En los frutos que se cosechen con pedúnculo, este último deberá presentar una longitud inferior a 2 cm.

ii) Categoría II.
A esta clase pertenecen los melones que no reúnen las condiciones necesarias para ser clasificados en la categoría I pero sí los requisitos mínimos ya especificados.

Se tolerarán los defectos que se enumeran más adelante, siempre que la fruta conserve sus características esenciales de calidad, capacidad de conservación y presentación:

- irregulares en la forma
- defectos de coloración (no se considerará defecto la coloración pálida de la corteza en la parte del fruto que ha estado en contacto con el suelo en la fase de crecimiento)
- ligeras magulladuras
- pequeñas grietas o cortes que no alcancen la pulpa de fruta y estén cicatrizados
- defectos de la epidermis ocasionados por el rozamiento y la manipulación.

V.23.3 DISPOSICIONES RELATIVAS AL CALIBRADO.

El calibre viene determinado por el peso de cada fruta o el diámetro de su sección ecuatorial.
Los calibres mínimos son los siguientes:

Calibrado por peso:

- Melón tipo Charentais y Ogen: 250g
- Melón de otras variedades: 300 g

Calibrado por diámetro:

- Melón tipo Charentais y Ogen: 7.5cm
- Melón de otras variedades: 8.0 cm

Cuando el calibre se exprese en peso, el peso del melón más grande de cada partida no deberá superar en más del 50 % (30 % en el caso del de tipo Charantais) al del más pequeño.

Cuando el calibre se exprese en diámetro, el diámetro del melón más grande de cada partida no podrá superar en más del 20 % (10 % en el caso del de tipo Charantais) al del más pequeño.

El calibrado es obligatorio para ambas categorías.

V.23.4 DISPOSICIONES RELATIVAS A LAS TOLERANCIAS.

En cada partida se admitirán tolerancias de calidad y calibre para los productos que no reúnan las condiciones correspondientes a la categoría indicada.

A. Tolerancias de calidad.

(i) Categoría I.
El 10 % de los melones, ya sea en peso o en número, que no reúnan las condiciones de esta categoría pero sí las de la categoría II o que, excepcionalmente, se sitúe dentro de los márgenes de tolerancia para esta última categoría.

(ii) Categoría II.
El 10 % de los melones, ya sea en peso o en número, que no reúnan las condiciones de esta categoría, ni las condiciones mínimas, excepto los productos podridos o deteriorados hasta el punto de que sean impropios para el consumo.

B. Tolerancias de calibre.
Para ambas categorías, el 10 % en peso o número de los melones cuyo tamaño sea levemente inferior o superior al indicado.
V.23.5 DISPOSICIONES RELATIVAS A LA PRESENTACIÓN.

A. Homogeneidad.

El contenido de cada partida deberá ser homogéneo y consistir en melones del mismo origen, variedad o tipo comercial, calidad y calibre, con el mismo grado aparente de madurez y crecimiento y del mismo color.

La parte visible del contenido de la partida deberá ser representativa de toda la mercancía.

B. Acondicionamiento.

- El envase de los melones deberá ofrecer una protección adecuada.
- Los materiales utilizados dentro de los envases deberán ser nuevos y limpios y de una composición que no pueda ocasionar al producto alteraciones externas o internas. Estará permitida la utilización de materiales y, en particular, de papeles o sellos en los que figuren indicaciones comerciales, siempre que la impresión o el etiquetado se efectúen con tinta o cola que no sean tóxicas.
- Los embalajes deberán estar libres de cuerpos extraños.

V.23.6 DISPOSICIONES RELATIVAS AL MARCADO.

Cada envase deberá llevar, en caracteres agrupados en el mismo lado, legibles, indelebles y visibles desde el exterior, las siguientes indicaciones:

A. Identificación.

Envasador o expedidor: Nombre y dirección o identificación simbólica expedida o reconocida por un servicio oficial. No obstante, en los casos en que se utilice un código (identificación simbólica), los términos "envasador o expedidor" (o una abreviatura equivalente) deben figurar cerca de ese código (identificación simbólica).

B. Naturaleza del producto.

- Deberá figurar la indicación "Melones" cuando el producto no sea visible desde el exterior.
- Nombre de la variedad al tipo comercial (por ejemplo: Charentais).

C. Origen del producto.

País de origen y, de forma facultativa, zona de producción o denominación nacional, regional o local.
D. Características comerciales.

- Categoría.
- Calibre, expresado en peso mínimo y máximo o en diámetro mínimo y máximo.
- Número de unidades (facultativo).
- Contenido mínimo de azúcar medido por refractómetro y expresado en valor Brix (facultativo).

E. Marca oficial de control (facultativa).

(1) No obstante, no se considerarán defecto las pequeñas hendiduras cicatrizadas causadas al efectuar la medición automática del índice refractométrico.
(2) El índice refractométrico de la pulpa medido en la zona media de la pulpa del fruto y en el plano ecuatorial deberá ser igual o superior a 10 ° Brix para los melones de tipo Charentais y a 8 ° Brix para el resto de los melones.
VI. METODOLOGÍA.

VI.1. CULTIVO Y APLICACIÓN DEL LIXIVIADO.

Se sembraron las semillas de melón en el semillero a una profundidad de 1-2 cm, posteriormente se regaron una vez al día por las mañanas, a los 25 días de germinación se trasplantaron las plantas a los garrafones. Los garrafones se distribuyeron en dos tratamientos, a los garrafones del tratamiento 1 se les colocaron 0.01 m3 de tierra de abono del cual el 10% es vermicomposta y los garrafones del tratamiento 2 se les colocaron 0.01 m3 de tierra común.

A los 10 días del trasplante se aplicó fertilizante 18-46 a los garrafones del tratamiento 2 y a los 25 días después del trasplante se aplicó a los garrafones del tratamiento 2 fertilizante foliar (Bayfolan) y se fumigaron con insecticida Arrivo. A los garrafones del tratamiento 1 se les aplicó Lixiviado de humus de lombriz. Estos tratamientos se repitieron cada 15 días.

VI.2. EVALUACIÓN DE LAS VARIABLES DEL DESARROLLO DE LAS PLANTAS DESPUÉS DEL TRANSPLANTE.

Se evaluó el desarrollo de las plantas a partir de los 35 días posteriores a su emergencia cuantificando las siguientes variables:

- Longitud de la planta o guía: se midió con una cinta métrica flexible la longitud de la rama principal de cada planta por tratamiento.
- Número de hojas por planta: se cuantificó el número de hojas por planta para cada tratamiento.
- Número de flores: se cuantificó el número de flores por planta para cada tratamiento.
- Número de frutos por planta: se cuantificó el número de frutos por planta para cada tratamiento.

VI.3. COSECHA DE LOS FRUTOS.

Los melones Cantaloupe se cosecharon por madurez y no por tamaño. Idealmente, la madurez comercial corresponde al estado firme-maduro o "3/4 desprendido", que se
identifica cuando al cortar la fruta suavemente, ésta se desprende de la planta. Los melones Cantaloupe maduran después de la cosecha, pero su contenido de azúcar no aumenta. El color externo de los frutos en estado "3/4 desprendido" varía entre cultivares, pudiendo caracterizarse por la presencia de tintes verdosos. El color de la piel en estos cultivares es típicamente gris a verde opaco cuando el fruto no tiene madurez comercial, verde oscuro uniforme en madurez comercial y amarillo claro en plena madurez de consumo.

VI.4. EVALUACIÓN DE LAS VARIABLES DE CALIDAD DEL FRUTO DESPUÉS DE LA COSECHA.

A los cinco días de cosechados, se tomaron 20 frutos de cada tratamiento y se les midió el diámetro empleando un vernier, se determinó el peso de cada uno en una balanza granataria digital, se determinó la dureza del fruto utilizando un penetrómetro FT 011 (WAGNER), para esta medición se partieron los frutos a la mitad y se insertó la punta del penetrómetro en una de las mitades directamente en la pulpa y se tomo la lectura. También se evaluó el contenido de sólidos solubles, para ello se maceró la pulpa en un mortero y se obtuvo el jugo por decantación, se colocó una gota del jugo en un refractómetro Pal-3 (ATAGO) y se tomó lectura en ° Brix, además se realizó la medición del pH en el jugo utilizando un potenciómetro 510 series (OAKTON).

Para evaluar las diferentes variables relacionadas con el desarrollo de las plantas y calidad del fruto se utilizó el programa estadístico Statgraphics (16.1). La tendencia central de los resultados se expresó por la media de los valores y la dispersión mediante la desviación estándar de la media.
VII. RESULTADOS Y DISCUSIÓN.

VII.1. Evaluación de las variables del desarrollo de las planatas después del trasplante.

VII.1.1 Número de hojas.

Como puede observarse en el Cuadro VII.1.1.1, los resultados obtenidos con respecto al promedio de hojas por planta; en las plantas fertilizadas con vermicomposta (V) no hubo diferencia estadística significativa a los 10 días, pero si la hubo a los 15, 20, 25 y 30 días (p<0.05). Se encontró que la variación del número de hojas fue mayor en las plantas tratadas con el fertilizante químico (Q) a los 10, 15, 25 y 30 días, sin embargo a los 20 días se encontró que la variación del número de hojas fue mayor en las plantas tratadas con vermicomposta.

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>Tiempo de Tratamiento (Días)</th>
<th>Promedio</th>
<th>Desviación Estándar</th>
<th>CV -%</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vermicomposta</td>
<td>10</td>
<td>8.1</td>
<td>2.6</td>
<td>32.2</td>
<td>3.0</td>
<td>16.0</td>
<td>13.0</td>
</tr>
<tr>
<td>Fertilizante químico</td>
<td>10</td>
<td>8.3</td>
<td>3.2</td>
<td>38.5</td>
<td>2.0</td>
<td>18.0</td>
<td>16.0</td>
</tr>
<tr>
<td>DMS (0.05)</td>
<td></td>
<td>0.83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vermicomposta</td>
<td>15</td>
<td>12.81</td>
<td>4.17</td>
<td>32.55</td>
<td>4.0</td>
<td>28.0</td>
<td>24.0</td>
</tr>
<tr>
<td>Fertilizante químico</td>
<td>15</td>
<td>11.14</td>
<td>4.34</td>
<td>38.99</td>
<td>3.0</td>
<td>23.0</td>
<td>20.0</td>
</tr>
<tr>
<td>DMS (0.05)</td>
<td></td>
<td>1.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vermicomposta</td>
<td>20</td>
<td>17.31</td>
<td>5.03</td>
<td>29.05</td>
<td>8.0</td>
<td>37.0</td>
<td>29.0</td>
</tr>
<tr>
<td>Fertilizante químico</td>
<td>20</td>
<td>13.51</td>
<td>3.86</td>
<td>28.59</td>
<td>6.0</td>
<td>24.0</td>
<td>18.0</td>
</tr>
<tr>
<td>DMS (0.05)</td>
<td></td>
<td>1.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vermicomposta</td>
<td>25</td>
<td>21.41</td>
<td>6.74</td>
<td>31.47</td>
<td>7.0</td>
<td>47.0</td>
<td>40.0</td>
</tr>
<tr>
<td>Fertilizante químico</td>
<td>25</td>
<td>15.37</td>
<td>5.77</td>
<td>37.52</td>
<td>5.0</td>
<td>33.0</td>
<td>28.0</td>
</tr>
<tr>
<td>DMS (0.05)</td>
<td></td>
<td>1.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vermicomposta</td>
<td>30</td>
<td>29.28</td>
<td>6.79</td>
<td>23.20</td>
<td>19.0</td>
<td>56.0</td>
<td>37.0</td>
</tr>
<tr>
<td>Fertilizante químico</td>
<td>30</td>
<td>22.76</td>
<td>5.71</td>
<td>25.08</td>
<td>13.0</td>
<td>41.0</td>
<td>28.0</td>
</tr>
<tr>
<td>DMS (0.05)</td>
<td></td>
<td>1.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DMS: Diferencia mínima significativa evaluada con p<0.05
CV = Coeficiente de variación
El análisis estadístico de los datos evidenció que la curtosis estandarizada para el tratamiento V (Vermicomposta) y para el tratamiento Q (fertilizante Químico), sigue una distribución normal y por lo tanto es adecuado realizar un análisis de varianza para comparar las medias de los dos tratamientos. Como puede observarse en el Cuadro VII.1.2, el valor de p fue menor que 0.05, entonces existe diferencia estadística significativa al comparar las medias de las hojas de las plantas cultivadas con los dos tratamientos con un nivel de confianza de 95.0%. Sin embargo a los 10 días el valor de p fue mayor que 0.05, por lo que no existe diferencia estadística significativa al comparar las medias de las hojas de las plantas cultivadas con los dos tratamientos con un nivel de confianza de 95.0%.

Cuadro VII.1.2.- Análisis de varianza del efecto del tipo de fertilización sobre el número de hojas en las plantas de melón.

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Tiempo de Tratamiento -Días-</th>
<th>Suma de Cuadrados</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Razón-F</th>
<th>Valor-P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td></td>
<td>1.6701</td>
<td>1</td>
<td>1.6701</td>
<td>0.20</td>
<td>0.6582</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>10</td>
<td>1632.89</td>
<td>192</td>
<td>8.50462</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td></td>
<td>1634.56</td>
<td>193</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entre grupos</td>
<td>15</td>
<td>133.383</td>
<td>1</td>
<td>133.38</td>
<td>7.35</td>
<td>0.0073</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>15</td>
<td>3446.6</td>
<td>190</td>
<td>18.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td></td>
<td>3579.98</td>
<td>191</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entre grupos</td>
<td>20</td>
<td>688.85</td>
<td>1</td>
<td>688.85</td>
<td>34.13</td>
<td>0.00</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>20</td>
<td>3814.21</td>
<td>189</td>
<td>20.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td></td>
<td>4503.06</td>
<td>189</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entre grupos</td>
<td>25</td>
<td>1741.58</td>
<td>1</td>
<td>1741.58</td>
<td>44.16</td>
<td>0.00</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>25</td>
<td>7453.47</td>
<td>189</td>
<td>39.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td></td>
<td>9195.06</td>
<td>189</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entre grupos</td>
<td>30</td>
<td>2024.64</td>
<td>1</td>
<td>2024.64</td>
<td>51.28</td>
<td>0.00</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>30</td>
<td>7462.34</td>
<td>189</td>
<td>39.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td></td>
<td>9486.97</td>
<td>189</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
VII.1.2 Longitud de la planta.

Como puede observarse en el Cuadro VII.1.2.1, los resultados obtenidos con respecto al promedio de la longitud de la planta; si hubo diferencia estadística significativa (p<0.05), entre las plantas fertilizadas con vermicomposta (V) y las tratadas con fertilizante químico (Q). Se encontró que la variación de longitud de la planta fue mayor en las plantas tratadas con fertilizante químico.

Cuadro VII.1.2.1.- Resumen del análisis estadístico del efecto del tipo de fertilización sobre la longitud de las plantas de melón.

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>Tiempo de Tratamiento -Días-</th>
<th>Promedio cm</th>
<th>Desviación Estándar</th>
<th>CV -%</th>
<th>Mínimo cm</th>
<th>Máximo cm</th>
<th>Rango cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vermicomposta</td>
<td>10</td>
<td>13.6</td>
<td>3.6</td>
<td>26.8</td>
<td>5.0</td>
<td>25.0</td>
<td>20.0</td>
</tr>
<tr>
<td>Fertilizante químico</td>
<td>10.8</td>
<td>10.8</td>
<td>3.2</td>
<td>30.1</td>
<td>4.0</td>
<td>21.0</td>
<td>17.0</td>
</tr>
<tr>
<td>DMS (0.05)</td>
<td></td>
<td>0.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vermicomposta</td>
<td>15</td>
<td>18.33</td>
<td>4.63</td>
<td>25.26</td>
<td>9.0</td>
<td>30.0</td>
<td>21.0</td>
</tr>
<tr>
<td>Fertilizante químico</td>
<td>13.69</td>
<td>13.69</td>
<td>4.27</td>
<td>31.18</td>
<td>5.0</td>
<td>28.0</td>
<td>23.0</td>
</tr>
<tr>
<td>DMS (0.05)</td>
<td></td>
<td>1.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vermicomposta</td>
<td>20</td>
<td>25.96</td>
<td>5.68</td>
<td>21.89</td>
<td>13.0</td>
<td>41.0</td>
<td>28.0</td>
</tr>
<tr>
<td>Fertilizante químico</td>
<td>18.45</td>
<td>18.45</td>
<td>5.04</td>
<td>27.31</td>
<td>7.0</td>
<td>35.0</td>
<td>28.0</td>
</tr>
<tr>
<td>DMS (0.05)</td>
<td></td>
<td>1.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vermicomposta</td>
<td>25</td>
<td>33.04</td>
<td>8.62</td>
<td>26.09</td>
<td>16.0</td>
<td>54.0</td>
<td>38.0</td>
</tr>
<tr>
<td>Fertilizante químico</td>
<td>22.65</td>
<td>22.65</td>
<td>8.23</td>
<td>36.35</td>
<td>8.0</td>
<td>49.0</td>
<td>41.0</td>
</tr>
<tr>
<td>DMS (0.05)</td>
<td></td>
<td>2.41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vermicomposta</td>
<td>30</td>
<td>39.94</td>
<td>8.32</td>
<td>20.83</td>
<td>22.0</td>
<td>61.0</td>
<td>39.0</td>
</tr>
<tr>
<td>Fertilizante químico</td>
<td>30.14</td>
<td>30.14</td>
<td>7.85</td>
<td>26.05</td>
<td>15.0</td>
<td>55.0</td>
<td>40.0</td>
</tr>
<tr>
<td>DMS (0.05)</td>
<td></td>
<td>2.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*DMS: Diferencia mínima significativa evaluada con p<0.05
CV = Coeficiente de variación*
El análisis estadístico de los datos evidenció que la curtosis estandarizada para el tratamiento V (Vermicomposta) y para el tratamiento Q (fertilizante Químico), siguen una distribución normal y por lo tanto es adecuado realizar un análisis de varianza para comparar las medias de los dos tratamientos. El análisis de varianza se presenta en el cuadro VII.1.2.2, como puede observarse el valor de p fue menor que 0.05, entonces existe diferencia estadística significativa al comparar las medias de la longitud de las plantas cultivadas con los dos tratamientos con un nivel de confianza de 95.0%.

Cuadro VII.1.2.2.- Análisis de varianza del efecto del tipo de fertilización sobre la longitud en las plantas de melón.

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Tiempo de Tratamiento -Días-</th>
<th>Suma de Cuadrados</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Razón-F</th>
<th>Valor-P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td></td>
<td>375.77</td>
<td>1</td>
<td>375.77</td>
<td>31.50</td>
<td>0.00</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>10</td>
<td>2290.78</td>
<td>192</td>
<td>11.93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td></td>
<td>2666.66</td>
<td>193</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entre grupos</td>
<td></td>
<td>1031.15</td>
<td>1</td>
<td>1031.15</td>
<td>51.95</td>
<td>0.00</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>15</td>
<td>3771.59</td>
<td>190</td>
<td>19.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td></td>
<td>4802.74</td>
<td>191</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entre grupos</td>
<td></td>
<td>2690.03</td>
<td>1</td>
<td>2690.03</td>
<td>93.08</td>
<td>0.00</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>20</td>
<td>5461.87</td>
<td>189</td>
<td>28.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td></td>
<td>8151.97</td>
<td>190</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entre grupos</td>
<td></td>
<td>5155.72</td>
<td>1</td>
<td>5155.72</td>
<td>72.51</td>
<td>0.00</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>25</td>
<td>13439.2</td>
<td>189</td>
<td>71.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td></td>
<td>18595.0</td>
<td>190</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entre grupos</td>
<td></td>
<td>4584.63</td>
<td>1</td>
<td>4584.63</td>
<td>70.01</td>
<td>0.00</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>30</td>
<td>12376.8</td>
<td>189</td>
<td>65.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td></td>
<td>16961.5</td>
<td>190</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
VII.1.3 Número de flores.

Como puede observarse en el Cuadro VII.1.3.1, los resultados obtenidos con respecto al promedio de número de flores por planta; en las plantas fertilizadas con vermicomposta (V) no hubo diferencia estadística significativa a los 10 y 15 días, pero si la hubo a los 20, 25, 30 y 35 días (p<0.05). Se encontró que la variación del número de flores a los 10 días fue mayor en las plantas tratadas con vermicomposta (V), sin embargo a los 15, 20, 25, 30 y 35 días de crecimiento la variación del número de flores fue mayor en las plantas tratadas con el fertilizante químico (Q).

Cuadro VII.1.3.1.- Resumen del análisis estadístico del efecto del tipo de fertilización sobre el número de flores en plantas de melón.

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>Tiempo de Tratamiento -Días-</th>
<th>Promedio</th>
<th>Desviación Estándar</th>
<th>CV -%-%</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vermicomposta</td>
<td>10</td>
<td>0.19</td>
<td>0.49</td>
<td>261.81</td>
<td>0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Fertilizante químico DMS (0.05)</td>
<td></td>
<td>0.28</td>
<td>0.60</td>
<td>218.42</td>
<td>0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Vermicomposta</td>
<td>15</td>
<td>0.73</td>
<td>0.95</td>
<td>130.08</td>
<td>0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Fertilizante químico DMS (0.05)</td>
<td></td>
<td>0.51</td>
<td>0.89</td>
<td>175.30</td>
<td>0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Vermicomposta</td>
<td>20</td>
<td>1.31</td>
<td>0.64</td>
<td>48.51</td>
<td>0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Fertilizante químico DMS (0.05)</td>
<td></td>
<td>0.84</td>
<td>0.74</td>
<td>87.77</td>
<td>0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Vermicomposta</td>
<td>25</td>
<td>1.41</td>
<td>0.9</td>
<td>63.62</td>
<td>0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Fertilizante químico DMS (0.05)</td>
<td></td>
<td>0.79</td>
<td>0.97</td>
<td>123.39</td>
<td>0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Vermicomposta</td>
<td>30</td>
<td>7.06</td>
<td>1.71</td>
<td>24.25</td>
<td>2.0</td>
<td>9.0</td>
<td>7.0</td>
</tr>
<tr>
<td>Fertilizante químico DMS (0.05)</td>
<td></td>
<td>5.72</td>
<td>2.67</td>
<td>46.57</td>
<td>2.0</td>
<td>15.0</td>
<td>13.0</td>
</tr>
<tr>
<td>Vermicomposta</td>
<td>35</td>
<td>14.46</td>
<td>4.09</td>
<td>28.26</td>
<td>8.0</td>
<td>29.0</td>
<td>21.0</td>
</tr>
<tr>
<td>Fertilizante químico DMS (0.05)</td>
<td></td>
<td>11.4</td>
<td>5.29</td>
<td>46.38</td>
<td>2.0</td>
<td>29.0</td>
<td>27.0</td>
</tr>
</tbody>
</table>

DMS: Diferencia mínima significativa evaluada con p<0.05
CV = Coeficiente de variación
El análisis estadístico de los datos evidenció que la curtosis estandarizada para el tratamiento V (Vermicomposta) y para el tratamiento Q (fertilizante Químico), siguen una distribución normal y por lo tanto es adecuado realizar un análisis de varianza para comparar las medias de los dos tratamientos. El análisis de varianza se presenta en el cuadro VII.1.3.2, como puede observarse el valor de p a los 10 y 15 días fue mayor que 0.05, entonces no existe diferencia estadística significativa al comparar las medias de la longitud de las plantas cultivadas con los dos tratamientos con un nivel de confianza de 95.0%, sin embargo a los 20, 25, 30 y 35 días el valor de p fue menor que 0.05, entonces existe diferencia estadística significativa al comparar las medias de la longitud de las plantas cultivadas con los dos tratamientos con un nivel de confianza de 95.0%.

Cuadro VII.1.3.2.- Análisis de varianza del efecto del tipo de fertilización sobre el número de flores en plantas de melón.

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Tiempo de Tratamiento (Días)</th>
<th>Suma de Cuadrados</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Razón-F</th>
<th>Valor-P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td></td>
<td>0.41</td>
<td>1</td>
<td>0.41</td>
<td>1.38</td>
<td>0.24</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>10</td>
<td>58.14</td>
<td>192</td>
<td>0.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>193</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entre grupos</td>
<td>15</td>
<td>2.467</td>
<td>1</td>
<td>2.47</td>
<td>2.91</td>
<td>0.089</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>191</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>163.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entre grupos</td>
<td>20</td>
<td>10.49</td>
<td>1</td>
<td>10.49</td>
<td>22.20</td>
<td>0.00</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>189</td>
<td></td>
<td></td>
<td>0.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>199.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entre grupos</td>
<td>25</td>
<td>18.66</td>
<td>1</td>
<td>18.66</td>
<td>21.34</td>
<td>0.00</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>189</td>
<td></td>
<td></td>
<td>0.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>189.91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entre grupos</td>
<td>30</td>
<td>85.52</td>
<td>1</td>
<td>85.52</td>
<td>17.15</td>
<td>0.0001</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>189</td>
<td></td>
<td></td>
<td>4.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>1027.96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entre grupos</td>
<td>35</td>
<td>234.09</td>
<td>1</td>
<td>234.09</td>
<td>10.48</td>
<td>0.0016</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>98</td>
<td></td>
<td></td>
<td>22.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>2422.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
VII.1.4 Número de frutos.

En el cuadro VII.1.4.1 se observa que en las plantas fertilizadas con vermicomposta (V) y las plantas tratadas con el fertilizante químico (Q) no hubo diferencia estadística significativa a los 35, 40, 50 y 55 días, pero sí la hubo a los 45, 60 y 65 días (p<0.05). Se encontró que la variación del número de frutos fue mayor en las plantas tratadas con el fertilizante químico, sin embargo a los 45 días la variación del número de frutos fue mayor en las plantas tratadas con vermicomposta.

Cuadro VII.1.4.1.- Resumen del análisis estadístico del efecto del tipo de fertilización sobre el número de frutos en las plantas de melón.

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>Tiempo de Tratamiento -Días-</th>
<th>Promedio</th>
<th>Desviación Estándar</th>
<th>CV -%</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vermicomposta</td>
<td>0.76</td>
<td>0.65</td>
<td>94.26</td>
<td>0</td>
<td>2.0</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Fertilizante químico</td>
<td>35</td>
<td>1.04</td>
<td>50.22</td>
<td>0</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>DMS (0.05)</td>
<td>0.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vermicomposta</td>
<td>0.84</td>
<td>0.79</td>
<td>46.41</td>
<td>0</td>
<td>2.0</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Fertilizante químico</td>
<td>45</td>
<td>1.26</td>
<td>7.27</td>
<td>0</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>DMS (0.05)</td>
<td>0.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vermicomposta</td>
<td>1.36</td>
<td>0.63</td>
<td>3.51</td>
<td>0</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>Fertilizante químico</td>
<td>50</td>
<td>1.26</td>
<td>0.66</td>
<td>0</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>DMS (0.05)</td>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vermicomposta</td>
<td>1.48</td>
<td>0.76</td>
<td>52.71</td>
<td>0</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>Fertilizante químico</td>
<td>60</td>
<td>1.26</td>
<td>0.62</td>
<td>0</td>
<td>2.0</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>DMS (0.05)</td>
<td>0.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vermicomposta</td>
<td>1.72</td>
<td>0.67</td>
<td>50.47</td>
<td>0</td>
<td>2.0</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Fertilizante químico</td>
<td>65</td>
<td>1.22</td>
<td>1.07</td>
<td>0</td>
<td>2.0</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>DMS (0.05)</td>
<td>0.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DMS: Diferencia mínima significativa evaluada con p<0.05
CV = Coeficiente de variación
El análisis estadístico de los datos evidenció que la curtosis estandarizada para el tratamiento V (Vermicomposta) y para el tratamiento Q (fertilizante Químico); siguen una distribución normal y por lo tanto es adecuado realizar un análisis de varianza para comparar las medias de los dos tratamientos. El análisis de varianza se presenta en el cuadro VII.1.4.2, como puede observarse a los 35, 40, 50 y 55 días el valor de p fue mayor que 0.05, entonces no existe diferencia estadística significativa al comparar las medias del número de frutos de las plantas cultivadas con los dos tratamientos con un nivel de confianza de 95.0%, sin embargo a los 45, 60 y 65 días el valor de p fue menor que 0.05, entonces existe diferencia estadística significativa al comparar las medias de la longitud de las plantas cultivadas con los dos tratamientos con un nivel de confianza de 95.0%.

Cuadro VII.1.4.2.- Análisis de varianza del efecto del tipo de fertilización sobre el número de frutos en las plantas de melón.

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Tiempo de Tratamiento -Días-</th>
<th>Suma de Cuadrados</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Razón-F</th>
<th>Valor-P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td></td>
<td>0.25</td>
<td>1</td>
<td>0.25</td>
<td>0.26</td>
<td>0.6092</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>35</td>
<td>93.14</td>
<td>98</td>
<td>0.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td></td>
<td>93.39</td>
<td>99</td>
<td>0.26</td>
<td>0.6092</td>
<td></td>
</tr>
<tr>
<td>Entre grupos</td>
<td></td>
<td>0.01</td>
<td>1</td>
<td>0.01</td>
<td>0.02</td>
<td>0.9025</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>40</td>
<td>64.9</td>
<td>98</td>
<td>0.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td></td>
<td>64.91</td>
<td>99</td>
<td>0.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entre grupos</td>
<td></td>
<td>4.41</td>
<td>1</td>
<td>4.41</td>
<td>8.59</td>
<td>0.0042</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>45</td>
<td>50.34</td>
<td>98</td>
<td>0.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td></td>
<td>54.75</td>
<td>99</td>
<td>0.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entre grupos</td>
<td></td>
<td>0.09</td>
<td>1</td>
<td>0.09</td>
<td>0.23</td>
<td>0.63</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>50</td>
<td>38.02</td>
<td>98</td>
<td>0.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td></td>
<td>38.11</td>
<td>99</td>
<td>0.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entre grupos</td>
<td></td>
<td>1.21</td>
<td>1</td>
<td>1.21</td>
<td>2.37</td>
<td>0.13</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>55</td>
<td>50.1</td>
<td>98</td>
<td>0.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td></td>
<td>51.31</td>
<td>99</td>
<td>0.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entre grupos</td>
<td></td>
<td>5.29</td>
<td>1</td>
<td>5.29</td>
<td>14.05</td>
<td>0.0003</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>60</td>
<td>36.9</td>
<td>98</td>
<td>0.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td></td>
<td>42.19</td>
<td>99</td>
<td>0.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entre grupos</td>
<td></td>
<td>6.25</td>
<td>1</td>
<td>6.25</td>
<td>15.06</td>
<td>0.0002</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>65</td>
<td>40.66</td>
<td>98</td>
<td>0.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td></td>
<td>46.91</td>
<td>99</td>
<td>0.41</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
VII.2. Evaluación de las variables de calidad del fruto de las plantas de melón después de la cosecha.

VII.2.1 Evaluación de las variables diámetro, peso, dureza, sólidos solubles y pH medidas a los frutos de las plantas de melón.

Como puede observarse en el Cuadro VII.2.1.1, los resultados obtenidos con respecto al promedio de las variables diámetro, peso, dureza, sólidos solubles y pH medidas a los frutos de las plantas de melón, no hubo diferencia estadística significativa (p<0.05). Se encontró que la variación de las variables diámetro, peso, sólidos solubles y pH fue mayor en los frutos de las plantas tratadas con vermicomposta, sin embargo la variación de la dureza fue mayor en los frutos de las plantas tratadas con el fertilizante químico.

Cuadro VII.2.1.1.- Resumen del análisis estadístico del efecto del tipo de fertilización sobre las variables diámetro, peso, dureza, sólidos solubles y pH evaluados a los frutos de las plantas de melón.

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>Variables</th>
<th>Promedio</th>
<th>Desviación Estándar</th>
<th>CV %-</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vermicomposta</td>
<td>Diámetro</td>
<td>7.32 cm</td>
<td>0.58</td>
<td>7.99</td>
<td>6.4 cm</td>
<td>8.1 cm</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>Fertilizante</td>
<td>7.45 cm</td>
<td>0.47</td>
<td>6.32</td>
<td>6.7 cm</td>
<td>8.3 cm</td>
<td>1.6</td>
</tr>
<tr>
<td>químico</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMS (0.05)</td>
<td></td>
<td>0.34 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vermicomposta</td>
<td>Peso</td>
<td>223.97 g</td>
<td>57.91</td>
<td>129.05 g</td>
<td>157.42 g</td>
<td>310.08 g</td>
<td>181.03</td>
</tr>
<tr>
<td></td>
<td>Fertilizante</td>
<td>216.37 g</td>
<td>38.18</td>
<td>17.65</td>
<td>28.49 g</td>
<td>316.75 g</td>
<td>126.67</td>
</tr>
<tr>
<td>químico</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMS (0.05)</td>
<td></td>
<td>31.4 g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vermicomposta</td>
<td>Dureza</td>
<td>1.51 lb</td>
<td>0.43</td>
<td>28.56</td>
<td>0.8 lb</td>
<td>2.4 lb</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>Fertilizante</td>
<td>1.3 lb</td>
<td>0.41</td>
<td>31.64</td>
<td>0.2 lb</td>
<td>2.1 lb</td>
<td>1.9</td>
</tr>
<tr>
<td>químico</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMS (0.05)</td>
<td></td>
<td>0.27 lb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vermicomposta</td>
<td>Sólidos Solubles</td>
<td>8.8 °Brix</td>
<td>2.15</td>
<td>24.44</td>
<td>5.9 °Brix</td>
<td>12.7 °Brix</td>
<td>6.8</td>
</tr>
<tr>
<td></td>
<td>Fertilizante</td>
<td>9.33 °Brix</td>
<td>1.62</td>
<td>17.33</td>
<td>7.1 °Brix</td>
<td>12.6 °Brix</td>
<td>5.5</td>
</tr>
<tr>
<td>químico</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMS (0.05)</td>
<td></td>
<td>1.22 °Brix</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vermicomposta</td>
<td>pH</td>
<td>6.8</td>
<td>0.7</td>
<td>10.4</td>
<td>5.99</td>
<td>8.24</td>
<td>2.25</td>
</tr>
<tr>
<td></td>
<td>Fertilizante</td>
<td>6.7</td>
<td>0.3</td>
<td>4.4</td>
<td>6.13</td>
<td>7.39</td>
<td>1.26</td>
</tr>
<tr>
<td>químico</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMS (0.05)</td>
<td></td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DMS: Diferencia mínima significativa evaluada con p<0.05
CV = Coeficiente de variación
El análisis estadístico de los datos evidenció que la curtosis estandarizada para el tratamiento V (Vermicomposta) y para el tratamiento Q (Fertilizante Químico), siguen una distribución normal y por lo tanto es adecuado realizar un análisis de varianza para comparar las medias de los dos tratamientos. El análisis de varianza se presenta en el cuadro VII.2.1.2. Debido a que el valor de p fue mayor que 0.05, entonces no existe diferencia estadística significativa al comparar las medias de diámetro, peso, dureza, sólidos solubles y pH del fruto de las plantas cultivadas con los dos tratamientos con un nivel de confianza de 95.0%.

Cuadro VII.2.1.2.- Análisis de varianza del efecto del tipo de fertilización sobre las variables diámetro, peso, dureza, sólidos solubles y pH evaluadas a los frutos de las plantas de melón.

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Variables</th>
<th>Suma de Cuadrados</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Razón-F</th>
<th>Valor-P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>Diámetro</td>
<td>0.16</td>
<td>1</td>
<td>0.16</td>
<td>0.55</td>
<td>0.46</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>Diámetro</td>
<td>10.70</td>
<td>38</td>
<td>0.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td></td>
<td>10.86</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entre grupos</td>
<td>Peso</td>
<td>577.82</td>
<td>1</td>
<td>577.83</td>
<td>0.24</td>
<td>0.62</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>Peso</td>
<td>91415.9</td>
<td>38</td>
<td>2405.68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td></td>
<td>91993.7</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entre grupos</td>
<td>Dureza</td>
<td>0.441</td>
<td>1</td>
<td>0.44</td>
<td>2.50</td>
<td>0.12</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>Dureza</td>
<td>6.699</td>
<td>38</td>
<td>0.176289</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td></td>
<td>7.14</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entre grupos</td>
<td>Sólidos Solubles</td>
<td>2.92</td>
<td>1</td>
<td>2.91</td>
<td>0.81</td>
<td>0.38</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>Sólidos Solubles</td>
<td>137.5</td>
<td>38</td>
<td>3.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td></td>
<td>140.41</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entre grupos</td>
<td>pH</td>
<td>0.07</td>
<td>1</td>
<td>0.067</td>
<td>0.23</td>
<td>0.63</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>pH</td>
<td>11.14</td>
<td>38</td>
<td>0.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td></td>
<td>11.20</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
VII.3. Discusión.

Derivado del análisis estadístico se establecieron las variables que presentaron diferencia significativa: número de hojas, número de flores, longitud de la planta y número de frutos (p<0.05), mientras que las variables diámetro, peso y dureza del fruto, así como pH y °Brix no presentaron diferencia significativa. De la prueba de comparación de medias de los tratamientos se determinó que el tratamiento con vermicomposta presentó el mayor valor en las variables de rendimiento: número de frutos (86), peso (310.08 g) y el tratamiento con el fertilizante químico generó el mayor valor para la variable diámetro de fruto (8.3 cm); esto debido a que la vermicomposta produce un aumento en el aporte de las plantas ya que contiene 4 veces más Nitrógeno (N), 25 veces más Fósforo (P), y 2.5 veces más Potasio (K) que los contenidos en el suelo, además de que los libera lentamente, lo que permite que el cultivo lo aproveche mejor, a diferencia de los fertilizantes químicos que son aplicados al suelo, ya que éstos no se mantienen en el mismo ni son utilizados por los cultivos en su totalidad, en parte son lavados por la lluvia o el agua de riego y las sales que contienen suben el pH de la tierra provocando clorosis férrica en el cultivo. El reglamento (CE) nº 1615/2001 por el que se fija la norma de comercialización de los melones a la Comunidad Europea indica los siguientes calibres mínimos peso: 300 g y por diámetro: 8.0 cm para otras variedades de melón que no sean del tipo Charentais y Ogen por lo que el tratamiento con la vermicomposta cumplió con ambos calibres mínimos, a diferencia del tratamiento con fertilizante químico que solo cumplió con el calibre mínimo por diámetro, para el índice refractométrico medido en la zona media de la pulpa del fruto indica que deberá ser igual o mayor a 8 °Brix, por lo que ambos tratamientos cumplen con la norma. Torres (1997) señala que el rango óptimo de sólidos solubles para la recolección oscila entre 12 y 14 °Brix, ya que por encima de 15 °Brix la conservación de los frutos es bastante corta, por lo que ambos tratamientos están dentro del rango óptimo para la recolección. Los resultados se asemejan a los encontrados por Sindoni et al. (2009), en la evaluación del efecto de la vermicomposta como enmienda orgánica para el cultivo inicial de plantas de lechosa (Carica papaya L.), quienes encontraron que la mezcla 3:7 Capa Vegetal de suelo (CV): Vermicomposta (V) y la aplicación de 500 g V/planta al momento del transplante generan mejores efectos sobre el crecimiento de las plantas y el mayor número de frutos/planta en invernadero. Por su parte, Reséndez y García (2002) señalan que en Chile Chilaca se obtuvieron diferencias significativas aplicando vermicomposta, generada apartir de estiércol de cabra, en una proporción de 12.25 al 37.5 %; Yuvarani et al (2013) encontraron que el crecimiento, el rendimiento y la calidad del melón (Cucumis melo L.) cultivado bajo el sistema de fertirrigación por goteo fue igual o mejor con la aplicación foliar de composta de té enriquecida con microorganismos, además de ayudar a la supresión del moho causado por Golovinomyces cichoracearum DC.
VIII. CONCLUSIÓN.

- Los resultados indican un efecto positivo de la vermicomposta sobre el desarrollo vegetativo, inicio de la floración y formación de frutos en las plantas de melón, CV. “Cantaloupe,” favoreciendo el crecimiento general de las mismas en el invernadero. Los resultados demostraron lo beneficioso de su empleo, no sólo durante la labor de trasplante a los garrafones en el invernadero, sino previamente en el semillero, como componente de sustrato. Los resultados superaron a los obtenidos con el empleo del fertilizante químico fórmula completa 18-46-0.

- El comportamiento observado de las variables; longitud de la planta, número de hojas, número flores, número de frutos, permite concluir que la vermicomposta satisface las necesidades nutritivas de la planta de melón, bajo condiciones de invernadero, superando a los valores obtenidos para estas variables en el tratamiento con fertilizante químico.

- El comportamiento observado de las variables; diámetro del fruto, peso del fruto, dureza, sólidos solubles y pH, permite concluir que los frutos de las plantas de melón cultivadas con la vermicomposta tuvieron un desarrollo satisfactorio bajo condiciones de invernadero, sin embargo en ambos tratamientos el fruto de la planta de melón cumple con los valores mínimos establecidos en la norma para su comercialización.
IX. RECOMENDACIONES.

- Realizar una evaluación sensorial de los frutos de ambos tratamientos.

- Evaluar la influencia de la poda en las plantas de melón Cantaloupe para estimular la aparición temprana de flores femeninas con el fin de incrementar el número de frutos.
X. REFERENCIAS BIBLIOGRÁFICAS.

