INSTITUTO TECNOLÓGICO DE TUXTLA GUTIÉRREZ.

PROYECTO DE INVESTIGACION

“BÚSQUEDA DE CADENAS EN BASE DE DATOS PARA SOFTWARE EDUCATIVO”

CASTILLO BARAJAS CARLOS ANDRÉS
TOVAR TORRES FRANCISCO

Asesor interno
M.C. Imelda Valles López.

Tuxtla Gutiérrez, Chiapas a 17 de Diciembre 2013
Resumen

El presente documento describe el desarrollo de un proyecto realizado con el objetivo de brindar una herramienta acorde a los planes educativos de la Secretaría de Educación Pública (SEP), que les permita a los docentes hacer más eficiente el proceso enseñanza y el aprendizaje en el nivel básico, fomentando el uso de herramientas tecnológicas de vanguardia a la población indígena sin alterar los conceptos de su medio, dialecto, costumbres y tradiciones propios de su cultura.

Anteriormente, se desarrolló un software educativo para el desarrollo de actividades didácticas, el cual se basa en tres actividades sencillas (Oraciones, Adivinanzas y Cuenta Cuentos), dicho software fue implementado para la escuela “Centro de Integración Social No. 9” (CIS9), ubicado en Zinacantán, Chiapas.

El problema surgió cuando los maestros creaban sus actividades pero no existía un módulo en el cual podían buscar y visualizar las realizadas anteriormente, esto generaba réplica, pérdida de tiempo y el desinterés por el uso del software.

Debido a que el proyecto está orientado a la web se utilizaron herramientas de bases de datos, hojas de estilo y animaciones web. Además por tratarse de una herramienta educativa se trabajó con apoyo de los docentes para diseñar una interfaz intuitiva y fácil uso para los mismos.

Nuestro proyecto se basa en una búsqueda de actividades ya existentes con el propósito de la reutilización de las mismas; enriqueciendo el conocimiento, compartiendo actividades de otros maestros.

Con la implantación del proyecto la problemática disminuyó debido a que hoy los maestros pueden hacer uso de una herramienta web que pueden adaptar a sus necesidades educativas y culturales.
Contenido

1. **Introducción** .. 4
 1.1 Antecedentes Generales del Proyecto ... 5

2. **Planteamiento del Problema** ... 6

3. **Justificación** ... 7

4. **Objetivo General** ... 9
 4.1 Objetivos Específicos ... 9

5. **Caracterización del Área en que Participó** ... 10
 5.1 Descripción .. 10
 5.2 Organigrama .. 13
 5.3 Croquis de Ubicación .. 13

6. **Problemas a Resolver, Priorizándolos** ... 14

7. **Alcances y Limitaciones** .. 15

8. **Marco Teórico** ... 16
 8.1 Software Educativo ... 16
 8.2 Sistemas Tutoriales .. 18
 8.3 Libros Electrónicos .. 18
 8.4 Mosaicos Mágicos y Mar de Letras ... 19
 8.5 Aprende a Leer con Pipo .. 19
 8.6 Perfil Sociodemográfico de Chiapas. Hablantes de Lengua Indígena 20
 8.6.1 Monolingüismo .. 23
 8.6.2 Porcentaje de Escuelas que Tienen al Menos una Computadora para Uso Educativo en
 Primaria y en Secundaria (2008) ... 24

9. **Ciclo de Vida por Prototipos** .. 26
 9.1 Ventajas: ... 26
 9.2 Tecnología del Servidor .. 27
 9.2.1 Elección de un Servidor Web ... 27
 9.3 Requisitos del Proyecto .. 30
 9.4 Elección de un Lenguaje de Programación ... 32
 9.5 Base de Datos ... 37
 9.6 Tecnología del Cliente ... 39
 9.7 La Necesidad de los Buscadores .. 44
9.7.1 Índices de Búsqueda ... 44
9.8 Motores de Búsqueda ... 46

10.- Procedimientos y Descripción de las Actividades Realizadas 47
 10.1 Preparación Preliminar del Proyecto .. 47
 10.2 Metodología de Trabajo y Revisión de Contenido 48
 10.3 Diseño de Propuesta ... 48
 10.4 Construcción del Prototipo ... 49
 10.5 Desarrollo del Software ... 49
 10.6 Retroalimentación ... 49

11.- Resultados Planos, Gráficas, Prototipos y Programas 50
 11.1 Diagramas de Flujo e Imágenes del Prototipo 50
 11.2 Diagrama de Casos de Uso del Prototipo 51
 11.3 Plantillas de Casos de Uso ... 52
 11.4 Diagrama de Bloques ... 54
 11.5 Diseño de la Base de Datos para el Prototipo 55
 11.6 Software De Actividades Didácticas para Lengua Indígena (SDADLI) 56
 11.7 Pantallas del Prototipo Uno .. 57
 11.8 Pantallas del Prototipo Dos .. 58

12.- Conclusiones y Recomendaciones .. 61

13.- Bibliografía .. 62

14.- Anexos .. 64
1.- Introducción
Cuando necesitamos de Internet, normalmente buscamos información sobre un tema concreto, y es difícil acceder a una página que la contenga, simplemente acezando al vínculo. Como solución a este problema surgieron los buscadores. Un **buscador es una página web en la que se ofrece consultar una base de datos en la cual se relacionan direcciones de páginas web con su contenido.** Su uso facilita enormemente la obtención de un listado de páginas web que contienen información sobre el tema que nos interesa. (aula21)

Existen varios tipos de buscadores, en función del modo de construcción y acceso a la base de datos, pero todos ellos tienen en común que **permiten una consulta en la que el buscador nos devuelve una lista de direcciones de páginas web relacionadas con el tema consultado** (aula21).

Para el desarrollo del proyecto se hizo uso de diferentes tecnologías web, para una herramienta didáctica bilingüe elaborado por alumnos del instituto tecnológico de Tuxtla Gutiérrez, Debido a que el proyecto está orientado a la web se utilizaron herramientas de bases de datos en MySQL, HTML, php y AJAX. Además por tratarse de una herramienta educativa se hizo lo más sencilla posible para el uso de los maestros.
1.1 Antecedentes Generales del Proyecto

La situación actual de la educación indígena denota la poca eficiencia de modelos, procesos y herramientas educativas que se viene dando desde mucho tiempo atrás, debido a la falta de material didáctico y “textos no adecuados ni pensados para el estudio de lenguas indígenas”

La educación indígena, se plantea y se ofrece a todos los escolares una educación en la propia lengua, más la posibilidad de adquirir el español como segunda, sin embargo este proceso no es así porque “desde los primeros días de clase se introduce ya la enseñanza en español”. Además de la “insuficiencia de materiales pedagógicos con relación a los valores culturales y lingüísticos de las comunidades, se siguen utilizando libros de textos nacionales, los cuales son elaborados y dirigidos para niños hispanohablantes; así mismo, no hay diferencia en cuanto al horario u organización de actividades” (ITTG, 2011)

La dirección general de educación indígena en la producción de materiales en lengua indígena, no se puede decir que tengan una utilidad práctica en el aula, ya que algunos son simples y pésimas traducciones de los materiales nacionales, dificultando con esto su uso. “No se ha entendido bien que la mejor manera de llegar a dominar el aprendizaje en los niños es mediante su propia lengua” (ITTG, 2011)

Con la situación planteada en los párrafos anteriores y sabedores de que CoNaCyT así como SEP tienen como uno de sus objetivos el desarrollo de nuevas herramientas educativas para cubrir eficientemente las necesidades de forma que se respete la pluricultura, se desarrolló una herramienta didáctica que permita a los docentes de escuelas indígenas generar actividades didácticas bilingües acordes a los programas educativos normados por la SEP. (ITTG, 2011)
2.- Planteamiento del Problema

De acuerdo a la experiencia de la maestra Sebastiana Candelaria Bautista Ara, profesionista de la educación en el medio indígena con maestría en Desarrollo de Educación Básica, que dio clases primaria en el municipio de San Pedro Chenalhó, municipio de habla tzotzil, y con la experiencia de tener como lengua materna este dialecto, dice que el distanciamiento lingüístico (tzotzil-español) en la enseñanza-aprendizaje de la lecto-escritura en la escuela indígena, no abre el campo significativo para que los alumnos comprendan el mundo social donde viven, ya que leen en un idioma que desconocen, la información no acontece dentro de su entorno y carece de vinculación con la cultura, la percepción y la vivencia de los niños.

Debido a la falta de material didáctico y “textos no adecuados ni pensados para el estudio de lenguas indígenas”, los cuales están diseñados en español, con ilustraciones no aptas a la vida sociocultural de la región.

El Software De Actividades Didácticas para Lengua Indígena (SDADLI) es un proyecto que está creado con la ayuda de maestros del Centro de Integración Social No. 9 (CIS9), con el propósito que ellos mismos puedan implementarlo, debido a la escases de programas enfocados a su cultura tzotzil, existen pocas herramientas tecnológicas que se adecuen a sus necesidades.

El SDADLI carece de un módulo de búsqueda que le permita los usuarios visualizar actividades ya realizadas por los mismos, el maestro busca las actividades en un listado de actividades realizadas sin saber de qué tipo es, esto causa réplica, pérdida de tiempo y la falta de interés.
3.- Justificación

“México es uno de los países con mayor diversidad lingüística y cultural, y los datos del segundo conteo de población y vivienda del 2005, realizados por el INEGI, muestran que Chiapas, en el ámbito nacional, solo después de Oaxaca es el estado con mayor población indígena, contando 957, 255 personas”, donde existen no menos de 12 lenguas étnicas no reconocidas oficialmente, siendo que sus usos en las funciones públicas de la vida chiapaneca no gozan de los mismos derechos ni el prestigio que el español. El tseltal y el tzotzil son las lenguas de mayor proporción monolingüe y eso indica que no solo existe un buen número de hablantes, sino que los idiomas siguen cumpliendo una función primordial en la interacción comunicativa diaria” (López Gómez, 2003)

La Declaración Universal de los derechos Lingüísticos puntualiza que los pueblos indígenas tienen el derecho a la enseñanza de la propia lengua y cultura, asimismo declara que la educación debe estar siempre al servicio de la diversidad lingüística y cultural, y las relaciones armoniosas entre diferentes comunidades lingüísticas de todo el mundo. También señala que toda comunidad lingüística tiene derecho a una educación que permita a sus miembros adquirir un conocimiento profundo de su patrimonio cultural (López Gómez, 2003).

Con el marco de referencia planteado, ante la falta de material didáctico en las escuelas de acuerdo a la cosmovisión y lengua indígena, contando la mayoría de instituciones educativas indígenas con laboratorio de cómputo donado por Únete entre otras instituciones Internacionales. (López Gómez, 2003)

Con el objetivo de brindar una herramienta de búsqueda que Ayude al maestro a minimizar el tiempo en el desarrollo de actividades didácticas multimedia, y debido que el uso de internet no siempre le proporciona respuestas satisfactorias sobre todo por el uso del lenguaje Tzotzil, de acuerdo con su entorno social (imágenes, sonidos o textos de su cultura). Se desarrolló una interfaz para que el maestro pueda visualizar actividades realizadas anteriormente, teniendo en cuenta que se poseen actividades ya desarrolladas por varios maestros o instituciones en la región. (López Gómez, 2003)
El Maestro podrá realizar una búsqueda y seleccionar la o las actividades semejantes a las que necesita, para modificar o usar todo o parte de ese material y al mismo tiempo profundizar en temas de interés retroalimentándolo, esto permitirá enriquecer el banco de datos de actividades y se generaran nuevas evitando el duplicado de actividades desarrolladas por el mismo o por otro educador.
4.- **Objetivo General**

Implementar un buscador que resulte de su indagación actividades didácticas bilingües que permita al profesor agilizar el desarrollo de las mismas realizando búsquedas de actividades ya desarrolladas para usarlas o modificar las mismas y ayude en la enseñanza básica en escuelas indígenas en nivel primaria.

4.1- **Objetivos Específicos**

- Análisis de la situación actual de los maestros de educación indígena utilizando como instrumentos de investigación
- Analizar la estructura del banco de datos
- Analizar el software con el que se va a implementar la herramienta (lenguaje y estructura).
- Diseñar la interfaz para la creación de actividades didácticas.
- Desarrollar la conexión a la base de datos.
- Desarrollar prototipos del buscador para ver el rendimiento.
- Elegir prototipo más eficiente con forming a las necesidades del problema.
- Implementar el motor de búsqueda a la interfaz.
5.- Caracterización del Área en que Participó

5.1- Descripción

Centro de Integración Social no.9

El Centro de integración social No.9 lleva el nombre del Dr. Manuel Gamio, y se encuentra ubicado en la cabecera municipal de Zinacantán, Chiapas. Imparte educación básica (primaria), están enfocados a la atención y servicio a los niños y niñas indígenas, proporcionándoles educación escolarizada.

Objetivo
Proporcionar y facilitar el acceso a la educación primaria a las niñas y los niños indígenas de 6 a 14 años de edad, provenientes de comunidades marginadas y de familias de escasos recursos económicos, mediante la presencia del servicio asistencias que brinda estos centros; además de proporcionar actividades tecnológicas y artísticas para eficientar el logro de la calidad desde un enfoque intercultural e incorporarse al proceso productivo. (Mario, julio 2010)

Misión
Ofrecer los servicios educativos modernos, innovadores y transparentes, con una gestión que garantice una educación de calidad, con alto sentido de responsabilidad, comprometido con el desarrollo integral de los educandos y la formación profesional y actualización de los docentes, para contribuir al desarrollo estatal de la niñez indígena del Estado de Chiapas, con base a las Necesidades Básicas de Aprendizaje en cada uno de los ámbitos educativos con el Enfoque Intercultural Bilingüe, a través de acciones específicas que fortalezcan la identidad indígena.

Visión
Brindar atención educativa, ofreciendo una educación de calidad que considere al alumno su razón de ser, capaz de dotarle de conocimientos para que se incorpore al mundo global de manera responsable y competitiva, con un alto sentido nacionalista, ético, humanista a partir de un enfoque intercultural bilingüe; encausado por
docentes comprometidos y formados profesionalmente, capaces de hacer un uso adecuado de las tecnologías de la información y la comunicación, que transmitan sus saberes acordes a la población indígena del Estado de México, en los niveles de Educación Inicial y Albergues Escolares, Preescolar, Primaria y el Centro de Integración Social No. 5 “CARMEN SERDAN”, garantizando el desarrollo de sus competencias y habilidades, que les permita satisfacer con equidad y pertinencia las Necesidades Básicas de Aprendizaje, en cada uno de los ámbitos educativos mediante un enfoque intercultural bilingüe.

Dirección del Centro de Integración Social

- Proporcionar servicio asistencial a las niñas y los niños indígenas de 6 a 14 años de edad, provenientes de localidades dispersas de familias de escasos recursos económicos para que acrediten su educación primaria.
- Difundir entre el personal docente bilingüe, técnico administrativo y manual, las normas y los lineamientos bajo los cuales deberá realizarse el trabajo escolar y el servicio asistencial en el Centro de Integración Social.
- Organizar, dirigir y apoyar en el desarrollo del proceso enseñanza-aprendizaje conforme a las normas, lineamientos de la educación intercultural bilingüe y planes y programas de estudios aprobados por la Secretaria de Educación Pública.
Personal Docente Bilingüe

- Desarrollar el proceso enseñanza-aprendizaje partiendo de la lengua materna de las alumnas y los alumnos y en la segunda lengua, para logar en los educandos un bilingüismo funcional.

- Fomentar con las alumnas y los alumnos el respecto y el derecho a la diversidad cultural y lingüística, propiciando el desarrollo de las mismas e inculcando la tolerancia para la convivencia armónica de los pueblos.

- Preparar el material de apoyo didáctico, preferentemente con los recursos disponibles en la comunidad, con el objetivo de facilitar la enseñanza teórica-práctica.

- Promover y orientar la participación de las comunidades indígenas en el cumplimiento del trabajo escolar, a fin de garantizar la formación integral de los educandos. (Mario, julio 2010)
5.2- Organigrama

5.3- Croquis de Ubicación
6.- Problemas a Resolver, Priorizándolos

✓ Insuficiencia de materiales pedagógicos con relación a los valores culturales y lingüísticos de las comunidades, utilizando libros de textos nacionales, los cuales son elaborados y dirigidos para niños hispanohablantes, que no son adecuados para el estudio de lenguas indígenas.

✓ Mala traducción de los materiales nacionales, que acostumbra usar la DGEI, sin que cumpla cabalmente la función de enseñanza en lengua materna (Tzotzil).

✓ Las escuelas cuentan con computadoras, medios interactivos y multimedia pero no tienen una aplicación eficiente a la educación, ya que no cuentan con programas, software y herramientas educativas que maximicen el uso de las tecnologías de la información.

✓ Los maestros cuentan con escaso software para el desarrollo de actividades didactas y estos se han quedado obsoletos con el paso del tiempo.
7.- Alcances y Limitaciones

En el software educativo están incluidos, para su prueba temas de la materia de español, esta se han seleccionado en conjunto con los catedráticos al ser la materia más básica en la educación primaria, señalada también en el programa de estudios 2009-2010 de la Secretaría de Educación, con más horas para aplicar con el alumno.

Los profesores del internado ayudaron en el análisis de actividades para el software, con material de enseñanza, técnicas y métodos, que por medio de la observación de las clases, pláticas y acuerdos se determinó lo más óptimo para ser tomado en cuenta, así como también permitieron la aplicación de la prueba de este software para poder medir su eficiencia y su eficacia con respecto al contenido y desarrollo de los programas educativos del nivel básico.

- El software es capaz de cargar archivos de audio, texto e imágenes
- Cada actividad (cuenta cuentos, adivinanzas u oraciones) cuenta con su propio módulo de carga en el cual dependiendo las necesidades del usuario usará.
- El software es capaz de cargar los archivos y da la opción de agregarles una descripción de los mismos dependiendo de la actividad a subir (cuenta cuentos, adivinanzas u oraciones)
- El programa soporta cualquier tipo de archivo de imagen (.jpg, .jpeg, .png, .gif)
- El programa soporta cualquier tipo de archivo de audio (mp3, wma, mp4, mid)
- En el Modulo buscador se realizaran las búsquedas correspondientes y las enlistará conforme a la o las palabras escritas en el dicho modulo.
- El modulo buscador cuenta además con las opciones de delimitas las búsquedas con el tipo de actividad (cuenta cuentos, adivinanzas u oraciones)
- Al arrojar el resultado de la búsqueda en el módulo buscador y dependiendo del tipo de actividad que haya elegido el usuario, este mostrara (título, texto, imagen o imágenes y audió)
- Al software es capaz de visualizar los archivos o reproducirlos ya que cuenta con una interfaz para ello.
8.- Marco Teórico

8.1 Software Educativo

En su Libro "Construyendo y Aprendiendo con el Computador", define el concepto genérico de Software Educativo como cualquier programa computacional cuyas características estructurales y funcionales sirvan de apoyo al proceso de enseñar, aprender y administrar. Un concepto más restringido de Software Educativo lo define como aquel material de aprendizaje especialmente diseñado para ser utilizado con una computadora en los procesos de enseñar y aprender. Según Rodríguez Lamas (2000), es una aplicación informática, que soportada sobre una bien definida estrategia pedagógica, apoya directamente el proceso de enseñanza aprendizaje constituyendo un efectivo instrumento para el desarrollo educacional del hombre del próximo siglo. Finalmente, los Software Educativos se pueden considerar como el conjunto de recursos informáticos diseñados con la intención de ser utilizados en el contexto del proceso de enseñanza – aprendizaje. Se caracterizan por ser altamente interactivos, a partir del empleo de recursos multimedia, como videos, sonidos, fotografías, diccionarios especializados, explicaciones de experimentados profesores, ejercicios y juegos instructivos que apoyan las funciones de evaluación y diagnóstico. Los software educativos pueden tratar las diferentes materias (Matemática, Idiomas, Geografía, Dibujo), de formas muy diversas (a partir de cuestionarios, facilitando una información estructurada a los alumnos, mediante la simulación de fenómenos) y ofrecer un entorno de trabajo más o menos sensible a las circunstancias de los alumnos y más o menos rico en posibilidades de interacción; pero todos comparten las siguientes características: (Stuart, 2010)

- Permite la interactividad con los estudiantes, retroalimentándolos y evaluando lo aprendido.
- Facilita las representaciones animadas.
- Incide en el desarrollo de las habilidades a través de la ejercitación.
- Permite simular procesos complejos.
Reducen el tiempo de que se dispone para impartir gran cantidad de conocimientos facilitando un trabajo diferenciado, introduciendo al estudiante en el trabajo con los medios computarizados.

Facilita el trabajo independiente y a la vez un tratamiento individual de las diferencias.

Permite al usuario (estudiante) introducirse en las técnicas más avanzadas. El uso del software educativo en el proceso de enseñanza-aprendizaje puede ser: Por parte del alumno. Se evidencia cuando el estudiante opera directamente el software educativo, pero en este caso es de vital importancia la acción dirigida por el profesor.

Por parte del profesor. Se manifiesta cuando el profesor opera directamente con el software y el estudiante actúa como receptor del sistema de información. La generalidad plantea que este no es el caso más productivo para el aprendizaje. El uso del software por parte del docente proporciona numerosas ventajas, entre ellas:

- Enriquece el campo de la Pedagogía al incorporar la tecnología de punta que revoluciona los métodos de enseñanza-aprendizaje.
- Constituyen una nueva, atractiva, dinámica y rica fuente de conocimientos.
- Pueden adaptar el software a las características y necesidades de su grupo teniendo en cuenta el diagnóstico en el proceso de enseñanza-aprendizaje.
- Permiten elevar la calidad del proceso docente-educativo.
- Permiten controlar las tareas docentes de forma individual o colectiva.
- Muestran la interdisciplinariedad de las asignaturas.
- Marca las posibilidades para una nueva clase más desarrolladora. (Stuart, 2010)

Los software educativos a pesar de tener unos rasgos esenciales básicos y una estructura general común se presentan con unas características muy diversas: unos aparentan ser un laboratorio o una biblioteca, otros se limitan a ofrecer una función instrumental del tipo máquina de escribir o calculadora, otros se presentan como un juego o como un libro, bastantes tienen vocación de examen, unos pocos se creen expertos... y la mayoría participan en mayor o menor medida de algunas de estas peculiaridades. Para poner orden a esta disparidad, se elaboraron múltiples tipologías que los clasifican a partir de diferentes criterios. Por ejemplo, hasta el año
2003, según los polos en los cuales se ha movido la educación, existían dos tipos de software educativos:

1.- Algorítmicos, donde predomina el aprendizaje vía transmisión del conocimiento, pues el rol del alumno es asimilar el máximo de lo que se le transmite. (Stuart, 2010)

Considerando la función educativa se pueden clasificar en:

8.2 Sistemas Tutoriales
Sistema basado en el diálogo con el estudiante, adecuado para presentar información objetiva, tiene en cuenta las características del alumno, siguiendo una estrategia pedagógica para la transmisión de conocimientos.

Sistemas Entrenadores Se parte de que los estudiantes cuentan con los conceptos y destrezas que van a practicar, por lo que su propósito es contribuir al desarrollo de una determinada habilidad, intelectual, manual o motora, profundizando en las dos fases finales del aprendizaje: aplicación y retroalimentación. (Pineda*, 2010).

8.3 Libros Electrónicos
Su objetivo es presentar información al estudiante a partir del uso de texto, gráficos, animaciones, videos, etc., pero con un nivel de interactividad y motivación que le facilite las acciones que realiza.

- Heurísticos, donde el estudiante descubre el conocimiento interactuando con el ambiente de aprendizaje que le permita llegar a él. Considerando la función educativa se pueden clasificar en:

- Simuladores Su objetivo es apoyar el proceso de enseñanza – aprendizaje, semejando la realidad de forma entretenida. - Juegos Educativos Su objetivo es llegar a situaciones excitantes y entretenidas, sin dejar en ocasiones de simular la realidad. - Sistemas Expertos Programa de conocimientos intensivo que resuelve problemas que normalmente requieren de la pericia humana. Ejecuta muchas funciones secundarias de manera análoga a un experto, por ejemplo, preguntar aspectos importantes y explicar razonamientos. Sistemas Tutoriales Inteligentes de enseñanza Despiertan mayor interés y motivación, puesto que pueden detectar errores, clasificarlos, y explicar por qué se producen, favoreciendo así el proceso de retroalimentación del estudiante. (Pineda*, 2010)
8.4 Mosaicos Mágicos y Mar de Letras

La Dirección General de Educación Indígena (DGEI) realizó estas herramientas que permitirá a maestros indígenas seguir los procesos de enseñanza, para elevar la calidad de la educación de los pueblos indígenas basados en la legitimación de sus raíces y la preservación de sus lenguas, de los saberes y conocimientos originarios. Está desarrollado en varias lenguas entre ellas náhuatl, hñahñu, tutunakú y maya. Este software es el resultado del trabajo colaborativo, en el que las y los docentes de la educación indígena comparten cómo organizan sus intervenciones en el aula, a favor de la niñez indígena y migrante con lo que se reafirman los procesos de enseñanza-aprendizaje y la calidad de la educación de los pueblos indígenas. Además el software educativo; "Mosaicos Mágicos y Mar de Letras" en náhuatl, hñahñu, tutunakú, maya y español fortalece el Programa de Habilidades Digitales para Todos (HDT), al llevar las nuevas tecnologías de la información y las comunicaciones a la Educación Básica de los pueblos indígena. El Mar de letras es una aplicación educativa diseñada principalmente para contribuir en la enseñanza de la materia de español, facilitando el aprendizaje de los siguientes temas de primaria:

- Conocimiento de la lengua escrita
- Comprensión de lectura
- Comprensión de clases de palabras.
- Sinónimos, antónimos y homónimos
- Significado de palabras

8.5 Aprende a Leer con Pipo (CIBAL Multimedia S.L, 2009)

Aprende a leer con Pipo, es un método interactivo y progresivo para aprender a leer. Además es un método flexible que permite ser adaptado a las diferentes metodologías de los maestros, y a las diferentes capacidades de los niños. Características más destacables:
• Puntuaciones personalizadas. Pipo reconoce el nombre de 99 niños y guarda las puntuaciones de cada niño, en cada letra y en cada uno de los juegos. A la pantalla de puntuaciones se puede llegar siempre que quiera pulsando la tecla F9. Resulta muy motivador para los niños.
• Si tiene algún problema, se ha incorporado una ayuda en cada una de las pantallas. Aparece al pulsar sobre la tecla F1.
• Pantalla Configuración del Juego. Para acceder a esta pantalla debe pulsar al mismo tiempo las teclas "A" y "F8", de esta manera se evita que los niños puedan cambiarla fácilmente.

8.6 Perfil Sociodemográfico de Chiapas. Hablantes de Lengua Indígena

Chiapas es un estado pluriétnico, en el cual coexiste la población mestiza con un importante número de grupos indígenas, ya que habitaban el territorio desde antes de la conquista española, y aún conservan algunos de sus rasgos culturales originales. (INEGI: Instituto Nacional de Estadística Geográfica e Informática, 2008)

La población indígena tiene una serie de características físicas, sociales, culturales, religiosas y una lengua indígena propia que la distingue del resto de la población.

En Chiapas, en 2005, la población de 5 y más años que habla alguna lengua indígena es de 957 255 personas, que representa 26.0%, mientras que a nivel nacional, la proporción es de 6.7%, y comprende a 6 011 202 hablantes.
La distribución de la población hablante de lengua indígena por grupos de edad en 2005, presenta una estructura joven; es decir, está conformada por un alto porcentaje de niños y jóvenes. Se confirma al revisar que los tres primeros grupos de edad (5-19 años), representan 46.5% de la población hablante.

Los grupos de mayor volumen ahora son los de 5-9 y 10-14 años, con 8.3% para los hombres y 8.1% para las mujeres, en ambos grupos.

Al analizar el porcentaje de población hablante de lengua indígena de los municipios seleccionados, se observan grandes contrastes. Por ejemplo, a nivel estatal, la proporción es de 26 por cada 100 personas. Mientras que cuatro municipios registran valores superiores a 95%, destaca Chamula como el mayor, con 99.7 por ciento. En el otro extremo se ubican Tapachula, Pijijiapan Tonalá y Huixtla, donde las cifras son inferiores al uno por ciento. Al revisar los datos del conteo 2005 con respecto a los del censo 2000, el comportamiento es diferente. (INEGI: Instituto Nacional de Estadística Geográfica e Informática, 2008)

Algunos presentan decrecimiento y otros crecimientos; sobresalen Ocozocoautla de Espinoza, San Cristóbal de las Casas y Las Margaritas, con 1.8, 1.9 y 2.6 puntos menos, respectivamente; en 11 municipios aumenta el porcentaje, y la mayor diferencia se presenta en Palenque, con 3.7 unidades porcentuales.
De la población que habla alguna lengua indígena en el estado, la mayor parte habla también español, es decir, 705 169, que representan 73.6%, y 238 154 no hablan español, lo que significa, que 24.9% se comunica sólo en su lengua indígena.

Al revisar el valor del indicador de la población monolingüe con respecto al que se presenta en 2000, que es de 36.6%, se observa una disminución de 11.7 unidades porcentuales, y en absolutos, el descenso hace referencia a 57 714 indígenas.

En Chiapas existen poco más de 238 mil personas hablantes de lengua indígena que no hablan español, y representan el 24.9% de la población hablante de lengua indígena. Esta población se encuentra distribuida en 90 municipios de los 118 que conforman a la entidad. (INEGI: Instituto Nacional de Estadística Geográfica e Informática., 2008)

En el ámbito municipal, en tres de los representados en la gráfica, la población monolingüe es superior a los 23 mil; destaca Chilón con 27 251; otros ocho municipios tienen más de 8 mil y menos de 15 mil; el resto registra cifras que fluctúan entre 1294 y 6432 monolingües. (INEGI: Instituto Nacional de Estadística Geográfica e Informática., 2008)
8.6.1 Monolingüismo

Al comparar los valores de 2005 con los del 2000, se observa que casi en todos, el nivel de monolingüismo decrece. Es importante señalar, que la excepción se presenta en sólo tres municipios de los registrados en la gráfica: Pantelhó, Sitalá y Chilón, que aumentan su población monolingüe. (INEGI: Instituto Nacional de Estadística Geográfica e Informática., 2008)
En el país, Chiapas ocupa el segundo lugar en cuanto al número de hablantes de lengua indígena y cuenta con una diversidad de grupos indígenas, se destacan en esta gráfica los siete principales.

El grupo indígena que destaca por ser el de mayor volumen es el tseltal, pues lo hablan 362,368 chiapanecos, que representa 37.9% del total de hablantes del estado, le sigue en importancia el tzotzil con 33.5%, y el chol con 16.9 por ciento. 9

8.6.2 Porcentaje de Escuelas que Tienen al Menos una Computadora para Uso Educativo en Primaria y en Secundaria (2008)

El primer indicador, Porcentaje de las escuelas que tienen al menos una computadora para uso educativo según nivel de educación básica (tabla AR02a-1), presenta los porcentajes de escuelas que en 2007 contaban con al menos una computadora para uno de los alumnos en relación con el total de escuelas de cada nivel educativo. (INEGI: Instituto Nacional de Estadística Geográfica e Informática., 2008)

El segundo indicador, Porcentaje de escuelas que tienen al menos una computadora conectada a internet para uso educativo según nivel en educación básica (tabla AR02b-1), muestra, a partir del primer indicador, es decir del toral de escuelas con computadora de uso educativo, la razón de aquellas que tienen por lo menos un equipo conectado a la red; de modo que las escuelas con internet son un subconjunto de las que cuentan con el equipo físico.

En 2007, a nivel nacional, las escuelas que reportaron tener una o más computadoras para sus alumnos representaron 50% de las primarias, de estos plantes casi la mitad de las primarias son las que además tienen conexión a internet. (INEGI: Instituto Nacional de Estadística Geográfica e Informática., 2008)
Tabla1 AR02b-1 INEE

<table>
<thead>
<tr>
<th>Entidad federativa</th>
<th>% escuelas con al menos una computadora</th>
<th>% primarias con al menos una computadora del total de escuelas en cada tipo de servicio</th>
<th>% secundarias con al menos una computadora del total de escuelas en cada tipo de servicio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Primaria</td>
<td>Secundaria</td>
<td>General</td>
</tr>
<tr>
<td>Aguascalientes</td>
<td>73.7</td>
<td>87.4</td>
<td>76.7</td>
</tr>
<tr>
<td>Baja California</td>
<td>48.6</td>
<td>79.0</td>
<td>49.2</td>
</tr>
<tr>
<td>Baja California Sur</td>
<td>60.9</td>
<td>84.6</td>
<td>68.6</td>
</tr>
<tr>
<td>Campeche</td>
<td>45.2</td>
<td>52.9</td>
<td>52.0</td>
</tr>
<tr>
<td>Coahuila</td>
<td>64.9</td>
<td>86.5</td>
<td>65.0</td>
</tr>
<tr>
<td>Colima</td>
<td>61.1</td>
<td>79.6</td>
<td>64.2</td>
</tr>
<tr>
<td>Chiapas</td>
<td>16.7</td>
<td>56.9</td>
<td>34.7</td>
</tr>
<tr>
<td>Chihuahua</td>
<td>66.9</td>
<td>75.0</td>
<td>67.8</td>
</tr>
</tbody>
</table>

Tabla2 AR02b-1 INEE

<table>
<thead>
<tr>
<th>Entidad federativa</th>
<th>% escuelas con al menos una computadora conectada a internet</th>
<th>% primarias con al menos una computadora conectada a internet del total de escuelas en cada tipo de servicio</th>
<th>% secundarias con al menos una computadora conectada a internet del total de escuelas en cada tipo de servicio</th>
<th>Para trabajadores</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Primaria</td>
<td>Secundaria</td>
<td>General</td>
<td>Indígena</td>
</tr>
<tr>
<td>Aguascalientes</td>
<td>17.4</td>
<td>46.3</td>
<td>17.4</td>
<td>n.a.</td>
</tr>
<tr>
<td>Baja California</td>
<td>70.0</td>
<td>74.4</td>
<td>70.9</td>
<td>36.8</td>
</tr>
<tr>
<td>Baja California Sur</td>
<td>89.6</td>
<td>66.9</td>
<td>89.6</td>
<td>n.a.</td>
</tr>
<tr>
<td>Campeche</td>
<td>57.1</td>
<td>37.9</td>
<td>56.5</td>
<td>63.6</td>
</tr>
<tr>
<td>Coahuila</td>
<td>73.3</td>
<td>62.1</td>
<td>73.3</td>
<td>n.a.</td>
</tr>
<tr>
<td>Colima</td>
<td>54.0</td>
<td>72.9</td>
<td>54.0</td>
<td>n.a.</td>
</tr>
<tr>
<td>Chiapas</td>
<td>55.2</td>
<td>13.2</td>
<td>57.0</td>
<td>43.3</td>
</tr>
<tr>
<td>Chihuahua</td>
<td>67.5</td>
<td>58.0</td>
<td>67.8</td>
<td>56.3</td>
</tr>
</tbody>
</table>
9.- Ciclo de Vida por Prototipos
El Modelo de prototipos, en Ingeniería de software, pertenece a los modelos de desarrollo evolutivo. El prototipo debe ser construido en poco tiempo, usando los programas adecuados y no se debe utilizar muchos recursos.
El diseño rápido se centra en una representación de aquellos aspectos del software que serán visibles para el cliente o el usuario final. Este diseño conduce a la construcción de un prototipo, el cual es evaluado por el cliente para una retroalimentación; gracias a ésta se refinan los requisitos del software que se desarrollará. La interacción ocurre cuando el prototipo se ajusta para satisfacer las necesidades del cliente. Esto permite que al mismo tiempo el desarrollador entienda mejor lo que se debe hacer y el cliente vea resultados a corto plazo. (Dante., 2008)

Etapas:
* Plan rápido
* Modelado, diseño rápido
* Construcción del Prototipo
* Desarrollo, entrega y retroalimentación
* Comunicación

9.1 Ventajas:
* Este modelo es útil cuando el cliente conoce los objetivos generales para el software, pero no identifica los requisitos detallados de entrada, procesamiento o salida.
También ofrece un mejor enfoque cuando el responsable del desarrollo del software está inseguro de la eficacia de un algoritmo, de la adaptabilidad de un sistema operativo o de la forma que debería tomar la interacción humano-máquina.
* disminuyen los costes de mantenimiento del producto final. Los tiempos de desarrollo son inferiores.
*El tamaño del sistema es menor.
*La especificación actúa como interface entre cliente y equipo de desarrollo.
*El propio prototipo sirve de contrato con el cliente y cualquier cambio en el prototipo debe estar consolidado por ambas partes.

*El prototipo es un documento vivo de buen funcionamiento del producto final.
*Ayuda para determinar requerimientos expresados en el prototipo. Experimenta sobre los aspectos del sistema que representan mayor complejidad. Demuestran la viabilidad del sistema.
*El cliente reacciona mucho mejor ante el prototipo, sobre el que puede experimentar, que no sobre una especificación escrita. (Dante., 2008)

La construcción de prototipos se puede utilizar como un modelo del proceso independiente, se emplea más comúnmente como una técnica susceptible de implementarse dentro del contexto de cualquiera de los modelos del proceso expuestos. Sin importar la forma en que éste se aplique, el paradigma de construcción de prototipos ayuda al desarrollador de software y al cliente a entender de mejor manera cuál será el resultado de la construcción cuando los requisitos estén satisfechos. De esta manera, este ciclo de vida en particular, involucra al cliente más profundamente para adquirir el producto (Dante., 2008)

9.2 Tecnología del Servidor
En este apartado describimos las tecnologías que serán instaladas en la máquina servidora y el por qué de su elección.

9.2.1- Elección de un Servidor Web
Un servidor web es un programa que está diseñado para transferir hipertextos, páginas web o páginas HTML (HyperText Markup Language): textos complejos con enlaces, figuras, formularios, botones y objetos incrustados como animaciones o reproductores de música. El programa implementa el protocolo HTTP (HyperText Transfer Protocol) que pertenece a la capa de aplicación del modelo OSI. El término también se emplea para referirse al ordenador que ejecuta el programa. (Linux, 2009)
Este es el top 5 de los servidores web más utilizados:

<table>
<thead>
<tr>
<th>SERVIDOR</th>
<th>PORCENTAJE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apache</td>
<td>57,12</td>
</tr>
<tr>
<td>Microsoft IIS</td>
<td>24,11</td>
</tr>
<tr>
<td>Google GFE</td>
<td>6,74</td>
</tr>
<tr>
<td>Nginx</td>
<td>5,62</td>
</tr>
<tr>
<td>Lighttpd</td>
<td>0,80</td>
</tr>
</tbody>
</table>

Tabla 3. Porcentaje de los 5 servidores web más populares.
Apache

Es el servidor más utilizado, aunque ha vivido tiempos mejores. Parte de su éxito se debe a que es multiplataforma y a su estructura modular, que permite emplear diversos lenguajes en el lado del servidor (PHP, Python y Perl principalmente), así como incorporar características como la compresión de datos, las conexiones seguras y la utilización de URLs amigables. (Linux, 2009)

Microsoft IIS

A pesar de haber superado los momentos en que era más conocido por sus vulnerabilidades que por sus características, IIS ha perdido mercado en los últimos años. Es el segundo servidor web más usado y cuenta con un buen número de módulos, pero también con el gran handicap de funcionar únicamente en Windows. (luis, 2010)

Google Web Server

El tercero más utilizado, conocido como GWS, es una gran incógnita. Google no publica apenas información sobre él y se rumorea que puede ser una versión adaptada de Apache. Obviamente, la gran cantidad de dominios que emplean este servidor no pertenecen todos a Google, sino que la mayoría son de compañías que emplean sus servicios como Blogger o App Engine. (luis, 2010)

Nginx

Es un servidor web ligero que funciona en múltiples plataformas (entre las que se encuentran Windows Linux y Mac OS X). Es usado por algunos sitios importantes como WordPress.com o Hulu. (luis, 2010)

Lighttpd

Es el otro gran servidor ligero, que permite usar menos cantidad de memoria y CPU. También es empleado por sitios con mucho tráfico como YouTube, Wikimedia, The Pirate Bay, etc. (luis, 2010)
9.3 Requisitos del Proyecto

Un servidor web compatible con el lenguaje de programación PHP y la base de datos MySQL. Tanto Apache como Microsoft IIS son compatibles con estas tecnologías y Apache está más optimizado para su uso con PHP y MySQL.

Coste
Apache es un servidor web HTTP de código abierto, Microsoft IIS requiere de la compra de una licencia comercial para poder ser utilizado por una compañía.¹³

Seguridad
Estadísticamente, el número de incidentes de seguridad sufridos por sistemas funcionando con productos de Microsoft es muy superior al de los ataques perpetrados contra sistemas de código abierto como Linux o Unix. Apache puede correr en varios sistemas operativos como UNIX, Linux o Windows siendo las dos primeras opciones las más seguras. Sin embargo, IIS pertenece a Microsoft y únicamente puede correr bajo un sistema operativo Windows, limitando opciones de configuración y penalizado, en mayor medida, la seguridad de nuestro servidor. (luis, 2010)
Usabilidad
En todo software es de agradecer poder disponer de una interfaz gráfica para su utilización ya que facilita en gran medida la configuración del mismo. Apache parece estar más limitado en este aspecto ya que toda configuración del servidor se realiza accediendo directamente a los ficheros de configuración del mismo. Por otro lado, Microsoft IIS dispone de una interfaz gráfica muy potente que facilita al usuario la utilización del software. (Luis, 2010)
En la siguiente tabla comparativa se muestra un resumen de las diferencias entre servidores.

<table>
<thead>
<tr>
<th></th>
<th>Apache</th>
<th>Microsoft IIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coste</td>
<td>Open Source (Gratuito)</td>
<td>Licencia (Pago)</td>
</tr>
<tr>
<td>Seguridad</td>
<td>Alta</td>
<td>Media</td>
</tr>
<tr>
<td>Usabilidad</td>
<td>Basada en ficheros de</td>
<td>Basada en interfaz gráfica</td>
</tr>
<tr>
<td></td>
<td>configuración que penalizan</td>
<td>que facilita su usabilidad</td>
</tr>
<tr>
<td></td>
<td>su usabilidad</td>
<td></td>
</tr>
<tr>
<td>Configuración</td>
<td>Muchas posibilidades de</td>
<td>Posibilidades de</td>
</tr>
<tr>
<td></td>
<td>configuración disponibles</td>
<td>configuración limitadas</td>
</tr>
<tr>
<td>Plataformas</td>
<td>UNIX, Linux, Windows</td>
<td>Windows</td>
</tr>
<tr>
<td>Servicios</td>
<td>Sólo Web</td>
<td>Web, SMTP, FTP, NNTP</td>
</tr>
<tr>
<td>Recursos necesarios</td>
<td>Consume pocos recursos</td>
<td>Consume muchos recursos</td>
</tr>
<tr>
<td>Velocidad</td>
<td>Muy rápido gracias a una</td>
<td>Servidor web menos optimizado</td>
</tr>
<tr>
<td></td>
<td>gran optimización</td>
<td>y por tanto, más lento</td>
</tr>
<tr>
<td>Módulos/Plugins</td>
<td>Dispone de un gran número de</td>
<td>Dispone de un número</td>
</tr>
<tr>
<td></td>
<td>módulos y plugins desarrollados por la comunidad</td>
<td>reducido de módulos y plugins</td>
</tr>
</tbody>
</table>

Tabla 4. Tabla comparativa de los servidores web Apache v Microsoft IIS.

Tras estudiar los puntos más importantes en la elección de un servidor web, la conclusión es que Apache es la mejor elección ya que, pese a no ser un software muy amigable en lo referente a su usabilidad, se trata de un servidor HTTP potente, seguro y muy configurable que cubre todas las necesidades del proyecto. (Luis, 2010)
9.4 Elección de un Lenguaje de Programación

Para realizar una buena elección de lenguaje de programación a utilizar en un proyecto, es esencial comparar las ventajas y desventajas de los tres lenguajes de programación de webs dinámicas más importantes que existen en el mercado: PHP, ASP.NET y JSP.

PHP es un lenguaje de programación sencillo con una curva de aprendizaje bastante plana. ASP.NET es un lenguaje completamente orientado a objetos. Su aprendizaje es más costoso que PHP pero existen varias herramientas de desarrollo que nos facilitan el trabajo a la hora de implementar el código llamadas IDE.

PHP (php, 2008)

Al ser un lenguaje libre dispone de una gran cantidad de características que lo convierten en la herramienta ideal para la creación de páginas web dinámicas:

Soporte para una gran cantidad de base de datos: MySQL, PostgreSQL, Oracle, MS SQL Server, Sybase Msql, entre otras.

Integración con varias bibliotecas externas, permite generar documentos en PDF hasta analizar código XML.

Ofrece una solución y universal para las paginaciones dinámicas del web de fácil programación.

- Perceptible más fácil de mantener y poner al día que el código desarrollado en otros lenguajes.

- Con PHP se puede hacer cualquier cosa que podemos realizar con un script CGI, como el...
procesamiento de información en formularios, foros de discusión, manipulación de cookies y páginas dinámicas. *(php, 2008)*

ASP.NET *(slideshare.net)*

No es sólo una simple actualización o la última versión de ASP. ASP.NET combina la productividad del desarrollador sin precedentes con un rendimiento, fiabilidad y la implementación. ASP.NET rediseña toda el proceso. A continuación se presentan las características de ASP.NET:

- **Fácil modelo de programación**, hace que la creación de aplicaciones del mundo real web drásticamente más fácil. Controles de servidor ASP.NET permite un estilo de HTML, como de la programación declarativa que le permite crear grandes páginas con mucho menos código que con ASP clásico.

- **Las flexibles opciones de idioma**, le permite aprovechar sus habilidades actuales lenguaje de programación.

- **Gran herramienta de soporte**, usando cualquier editor de texto, incluso el bloc de notas, sin embargo Visual Studio.

- **Rica Framework**, ofrece más de 4500 clases que encapsulan la funcionalidad rica como XML, acceso a datos, carga de archivos, expresiones de registro, generación de imágenes, control de rendimiento y operaciones de registro, etc.

- **Compilación de ejecución**, es mucho más rápido, detecta automáticamente los cambios, de forma dinámica compilar los archivos si es necesario, y almacenar los resultados compilados para la reutilización de las solicitudes posteriores.
Java (Marañón, 1999)

- **Lenguaje simple**, Java posee una curva de aprendizaje muy rápida. Resulta relativamente sencillo escribir applets interesantes desde el principio.

- **Orientado a objetos**, Java fue diseñado como un lenguaje orientado a objetos desde el principio. Los objetos agrupan en estructuras encapsuladas tanto sus datos como los métodos (o funciones) que manipulan esos datos.

- **Distribuido**, Java proporciona una colección de clases para su uso en aplicaciones de red, que permiten abrir sockets y establecer y aceptar conexiones con servidores o clientes remotos, facilitando así la creación de aplicaciones distribuidas.

- **Interpretado y compilado a la vez**, Java es compilado, en la medida en que su código fuente se transforma en una especie de código máquina, los bytecodes, semejantes a las instrucciones de ensamblador.

- **Seguro**, Dada la naturaleza distribuida de Java, donde las applets se bajan desde cualquier punto de la Red, la seguridad se impuso como una necesidad de vital importancia.

- **Dinámico**, El lenguaje Java y su sistema de ejecución en tiempo real son dinámicos en la fase de enlazado. Las clases sólo se enlanzan a medida que son necesitadas. Se pueden enlazar nuevos módulos de código bajo demanda, procedente de fuentes muy variadas, incluso desde la Red.

Coste (Garalut, 2009)

Mientras que PHP y JSP son dos lenguajes de programación gratuitos, ASP.NET requiere de la compra de licencias bastante caras para su utilización con fines comerciales.
Servidor Web (Garalut, 2009)

ASP.NET requiere de un servidor Windows con Microsoft IIS y el Framework .NET instalados para su funcionamiento. Para utilizar JSP es necesario tener instalado un servidor Tomcat. PHP puede utilizarse con varios servidores entre ellos Apache y Microsoft IIS.

Base de Datos

Los tres lenguajes puede trabajar perfectamente con los principales servidores de base de datos si bien PHP + MySQL, ASP.NET + MSSQL Server y JSP + Oracle son las combinaciones más recomendadas.

Librerías

Los tres lenguajes tienes muchas librerías disponibles para los desarrolladores pero sobretodo PHP y JSP disponen de multitud de librerías desarrolladas por la comunidad gratuitas y Open Source.

Ventajas y Desventajas (Garalut, 2009)

Sintaxis: Java es el que mejor sintaxis tiene, PHP aún usa ‘::’ y ‘->’ y algunas funciones podrían ser usadas dentro de los objetos y no como procedimientos. Para ASP.NET lo más sencillo es VB.NET.

- **Curva de Aprendizaje:** PHP es el más sencillo, aunque a mí me pasa que siempre tengo que estar mirando en algunas funciones el orden de los parámetros porque a veces no siguen la misma lógica. ASP.NET también es bastante sencillo y J2EE el más complicado de aprender.

- **Velocidad de Desarrollo:** ASP.NET es el más rápido, debido a la cantidad de componentes que tiene que te hacen todo el trabajo. PHP es rápido si se usa algún Framework. J2EE es el más lento.

- **Plataforma:** PHP trabaja mejor en LAMP, aunque funciona también en otras plataformas, ASP.NET es Windows y J2EE trabaja bien en cualquier plataforma.
- **Base de Datos:** normalmente es MySQL para PHP, Oracle para J2EE y MSSQL para ASP.NET.

- **Soporte Orientado a Objetos:** J2EE y ASP.NET son los mejores, aunque PHP ha mejorado en las últimas versiones.

- **Seguridad:** J2EE parece el más seguro, aunque PHP tiene mala fama, pero es debido sobre todo a los desarrolladores, no al lenguaje de programación. ASP.NET tiene también mala fama debido a fallos de seguridad debidos a Windows.

- **Rendimiento:** Suele ganar PHP en cuestión de velocidad y recursos. J2EE es más pesado, parecido a ASP.NET.

- **Servidor Web:** ASP.NET solo funciona con IIS, PHP y J2EE tiene versiones comerciales y open source.

- **Librerías y Frameworks:** Todos tienen muchas librerías y Frameworks disponibles, siendo para PHP y J2EE la mayoría gratuitas y open source.

- **Soporte y comunidad:** para ASP.NET la mayoría de los foros, grupos de usuarios y comunidades de desarrolladores están manejados por Microsoft, mientras que para PHP y J2EE existen muchos grupos independientes.

- **Coste:** PHP es la alternativa totalmente gratuita, ASP.NET tiene licencias bastante caras, mientras que J2EE puede desarrollarse con herramientas gratuitas y de pago.

Conclusión

De acuerdo a los puntos importantes que sea comparado anteriormente se puede observar que PHP es un software libre que se integra perfectamente con el servidor HTTP Apache y, a su vez, es sencillo de utilizar y recibe soporte constante por parte de la comunidad poniendo a nuestra disposición multitud de librerías que nos serán
muy útiles a la hora de desarrollar gran parte de los requerimientos de nuestro proyecto.

9.5 Base de Datos

MySQL (mysql.com, 2013)

Es un sistema de gestión de bases de datos relacional, multihilo y multiusuario con más de seis millones de instalaciones. MySQL AB desde enero de 2008 una subsidiaria de Sun Microsystems y ésta a su vez de Oracle Corporation desde abril de 2009 desarrolla MySQL como software libre en un esquema de licenciamiento dual.

Por un lado se ofrece bajo la GNU GPL para cualquier uso compatible con esta licencia, pero para aquellas empresas que quieran incorporarlo en productos privativos deben comprar a la empresa una licencia específica que les permita este uso. Está desarrollado en su mayor parte en ANSI C.

Al contrario de proyectos como Apache, donde el software es desarrollado por una comunidad pública y los derechos de autor del código están en poder del autor individual, MySQL es patrocinado por una empresa privada, que posee el copyright de la mayor parte del código. Esto es lo que posibilita el esquema de licenciamiento anteriormente mencionado. Además de la venta de licencias privativas, la compañía ofrece soporte y servicios. Para sus operaciones contratan trabajadores alrededor del mundo que colaboran vía Internet. MySQL AB fue fundado por David Axmark, Allan Larsson y Michael Widenius.

MySQL es usado por muchos sitios web grandes y populares, como Wikipedia, Google (aunque no para búsquedas), Facebook, Twitter, Flickr, y YouTube. (mysql.com, 2013)
Aplicaciones

MySQL es muy utilizado en aplicaciones web, como Drupal o phpBB, en plataformas (Linux/Windows-Apache-MySQL-PHP/Perl/Python), y por herramientas de seguimiento de errores como Bugzilla. Su popularidad como aplicación web está muy ligada a PHP, que a menudo aparece en combinación con MySQL. (mysql.com, 2013)

MySQL es una base de datos muy rápida en la lectura cuando utiliza el motor no transaccional MyISAM, pero puede provocar problemas de integridad en entornos de alta concurrencia en la modificación. En aplicaciones web hay baja concurrencia en la modificación de datos y en cambio el entorno es intensivo en lectura de datos, lo que hace a MySQL ideal para este tipo de aplicaciones. Sea cual sea el entorno en el que va a utilizar MySQL, es importante monitorizar de antemano el rendimiento para detectar y corregir errores tanto de SQL como de programación.

Características

Inicialmente, MySQL carecía de elementos considerados esenciales en las bases de datos relacionales, tales como integridad referencial y transacciones. A pesar de ello, atrajo a los desarrolladores de páginas web con contenido dinámico, justamente por su simplicidad.

Poco a poco los elementos de los que carecía MySQL están siendo incorporados tanto por desarrollos internos, como por desarrolladores de software libre. Entre las características disponibles en las últimas versiones se puede destacar:

- Amplio subconjunto del lenguaje SQL. Algunas extensiones son incluidas igualmente.
- Disponibilidad en gran cantidad de plataformas y sistemas.
- Posibilidad de selección de mecanismos de almacenamiento que ofrecen diferente velocidad de operación, soporte físico, capacidad, distribución geográfica, transacciones...
- Transacciones y claves foráneas.
- Conectividad segura.
• Replicación.
• Búsqueda e indexación de campos de texto.

MySQL es un sistema de administración de bases de datos. Una base de datos es una colección estructurada de tablas que contienen datos. Esta puede ser desde una simple lista de compras a una galería de pinturas o el vasto volumen de información en una red corporativa. Para agregar, acceder a y procesar datos guardados en un computador, usted necesita un administrador como MySQL Server. Dado que los computadores son muy buenos manejando grandes cantidades de información, los administradores de bases de datos juegan un papel central en computación, como aplicaciones independientes o como parte de otras aplicaciones.

MySQL es un sistema de administración relacional de bases de datos. Una base de datos relacional archiva datos en tablas separadas en vez de colocar todos los datos en un gran archivo. Esto permite velocidad y flexibilidad. Las tablas están conectadas por relaciones definidas que hacen posible combinar datos de diferentes tablas sobre pedido.

MySQL es software de fuente abierta. Fuente abierta significa que es posible para cualquier persona usarlo y modificarlo. Cualquier persona puede bajar el código fuente de MySQL y usarlo sin pagar. Cualquier interesado puede estudiar el código fuente y ajustarlo a sus necesidades. MySQL usa el GPL (GNU General Public License) para definir qué puede hacer y qué no puede hacer con el software en diferentes situaciones. Si usted no se ajusta al GPL o requiere introducir código MySQL en aplicaciones comerciales, usted puede comprar una versión comercial licenciada.

9.6 Tecnología del Cliente
Como hemos explicado en el apartado tecnología del servidor, el proyecto está formado por un servidor Apache con PHP y una base de datos MySQL. Esta elección nos permite evitar cualquier desarrollo para los terminales clientes de acceso a la plataforma ya que con un simple navegador y conexión a la red los usuarios podrán acceder fácilmente la plataforma.
Para ello se hace uso del lenguaje de programación básico que interpretan los navegadores de internet, el HTML (HyperText Markup Language) procurando cumplir con el estándar de W3C21. Para algunas funcionalidades adicionales que pueden ejecutarse directamente en el cliente como la validación de capos o la creación de calendarios para seleccionar fechas utilizaremos JavaScript. Por último, utilizaremos AJAX como un añadido para subir archivos de audio e imágenes en tiempo real al servidor web. (mysql.com, 2013)

HTML (Luján Mora, 2008)

HTML, siglas de *HyperText Markup Language* («lenguaje de marcas de hipertexto»), hace referencia al lenguaje de marcado para la elaboración de páginas web. Es un estándar que, en sus diferentes versiones, define una estructura básica y un código (denominado código HTML) para la definición de contenido de una página web, como texto, imágenes, etc. Es un estándar a cargo de la W3C, organización dedicada a la estandarización de casi todas las tecnologías ligadas a la web, sobre todo en lo referente a su escritura e interpretación.

El lenguaje HTML basa su filosofía de desarrollo en la referenciación. Para añadir un elemento externo a la página (imagen, vídeo, script, etc.), este no se incrusta directamente en el código de la página, sino que se hace una referencia a la ubicación de dicho elemento mediante texto. De este modo, la página web contiene sólo texto mientras que recae en el navegador web (interpretador del código) la tarea de unir todos los elementos y visualizar la página final. Al ser un estándar, HTML busca ser un lenguaje que permita que cualquier página web escrita en una determinada versión, pueda ser interpretada de la misma forma (estándar) por cualquier navegadores web actualizado.18

Sin embargo, a lo largo de sus diferentes versiones, se han incorporado y suprimido características, con el fin de hacerlo más eficiente y facilitar el desarrollo de páginas web compatibles con distintos navegadores y plataformas (PC de escritorio, portátiles, teléfonos inteligentes, tablets, etc.). Sin embargo, para interpretar correctamente una nueva versión de HTML, los desarrolladores de navegadores web
deben incorporar estos cambios y el usuario debe ser capaz de usar la nueva versión del navegador con los cambios incorporados. Usualmente los cambios son aplicados mediante parches de actualización automática (Firefox, Chrome) u ofreciendo una nueva versión del navegador con todos los cambios incorporados, en un sitio web de descarga oficial (Internet Explorer). Un navegador no actualizado no será capaz de interpretar correctamente una página web escrita en una versión de HTML superior a la que pueda interpretar, lo que obliga muchas veces a los desarrolladores a aplicar técnicas y cambios que permitan corregir problemas de visualización e incluso de interpretación de código HTML. Así mismo, las páginas escritas en una versión anterior de HTML deberían ser actualizadas o reescritas, lo que no siempre se cumple. Es por ello que ciertos navegadores aún mantienen la capacidad de interpretar páginas web de versiones HTML anteriores. Por estas razones, aún existen diferencias entre distintos navegadores y versiones al interpretar una misma página web.18

Elementos

Los elementos son la estructura básica de HTML. Los elementos tienen dos propiedades básicas: atributos y contenido. Cada atributo y contenido tiene ciertas restricciones para que se considere válido al documento HTML. Un elemento generalmente tiene una etiqueta de inicio (por ejemplo, \texttt{<nombre-de-elemento>}) y una etiqueta de cierre (por ejemplo, \texttt{</nombre-de-elemento>}). Los atributos del elemento están contenidos en la etiqueta de inicio y el contenido está ubicado entre las dos etiquetas (por ejemplo, \texttt{<nombre-de-elemento atributo= "valor">Contenido </nombre-de-elemento>}).18
El marcado *estructural* describe el propósito del texto. Por ejemplo, `<h2>Golf</h2>` establece «Golf» como un encabezamiento de segundo nivel, el cual se mostraría en un navegador de una manera similar al título «Marcado HTML» al principio de esta sección. El marcado estructural no define cómo se verá el elemento, pero la mayoría de los navegadores web han estandarizado el formato de los elementos. Puede aplicarse un formato específico al texto por medio de hojas de estilo en cascada. (Luján Mora, 2008)

El marcado *presentacional* describe la apariencia del texto, sin importar su función. Por ejemplo, `negrita` indica que los navegadores web visuales deben mostrar el texto en **negrita**, pero no indica qué deben hacer los navegadores web que muestran el contenido de otra manera (por ejemplo, los que leen el texto en voz alta). En el caso de `negrita` e `<i>itálica</i>`, existen elementos que se ven de la misma manera pero tienen una naturaleza más semántica: `énfasis fuerte` y `énfasis`. Es fácil ver cómo un lector de pantalla debería interpretar estos dos elementos. Sin embargo, son equivalentes a sus correspondientes elementos prestacionales: un lector de pantalla no debería decir más fuerte el nombre de un libro, aunque éste esté en *ítalicas* en una pantalla. La mayoría del marcado presentacional ha sido desechada con HTML 4.0, en favor de hojas de estilo en cascada.

Atributos

La mayoría de los atributos de un elemento son pares nombre-valor, separados por un signo de igual «=» y escritos en la etiqueta de comienzo de un elemento, después del nombre de éste. El valor puede estar rodeado por comillas dobles o simples, aunque ciertos tipos de valores pueden estar sin comillas en HTML (pero no en XHTML). De todas maneras, dejar los valores sin comillas es considerado poco seguro. En contraste con los pares nombre-elemento, hay algunos atributos que afectan al elemento simplemente por su presencia (tal como el atributo ismap para el elemento img) (Luján Mora, 2008)

AJAX (Garrett, 2005)

El término AJAX se presentó por primera vez en el artículo "Ajax: A New Approach to Web Applications" publicado por Jesse James Garrett el 18 de Febrero de 2005. Hasta ese momento, no existía un término normalizado que hiciera referencia a un nuevo tipo de aplicación web que estaba apareciendo.

En realidad, el término AJAX es un acrónimo de Asynchronous JavaScript + XML, que se puede traducir como "JavaScript asíncrono + XML".

El artículo define AJAX de la siguiente forma:

"Ajax no es una tecnología en sí mismo. En realidad, se trata de varias tecnologías independientes que se unen de formas nuevas y sorprendentes." (Garrett, 2005)

Las tecnologías que forman AJAX son:
- XHTML y CSS, para crear una presentación basada en estándares.
- DOM, para la interacción y manipulación dinámica de la presentación.
- XML, XSLT y JSON, para el intercambio y la manipulación de información.
- XMLHttpRequest, para el intercambio asíncrono de información.
- JavaScript, para unir todas las demás tecnologías. (Garrett, 2005)

Figura 4. Tecnologías agrupadas bajo el concepto de AJAX
9.7 La Necesidad de los Buscadores

Cuando necesitamos de Internet, normalmente buscamos información sobre un tema concreto, y es difícil acceder a una página que la contenga, simplemente pinchando vínculos. Como solución a este problema surgieron los buscadores. Un buscador es una página web en la que se ofrece consultar una base de datos en la cual se relacionan direcciones de páginas web con su contenido. Su uso facilita enormemente la obtención de un listado de páginas web que contienen información sobre el tema que nos interesa. (Martínez, 2013)

Existen varios tipos de buscadores, en función el modo de construcción y acceso a la base de datos, pero todos ellos tienen en común que permiten una consulta en la que el buscador nos devuelve una lista de direcciones de páginas web relacionadas con el tema consultado.

El origen de los buscadores se remonta a abril de 1994, año en el que una pareja de universitarios norteamericanos (David Filo y Jerry Yang) decidieron crear una página web en la que se ofreciera un directorio de páginas interesantes clasificadas por temas, pensando siempre en las necesidades de información que podrían tener sus compañeros de estudios. Había nacido Yahoo!. El éxito de esta página fue tan grande que una empresa decidió comprarla y convertirla en el portal que hoy conocemos. Además del buscador, hoy Yahoo! ofrece muchos más servicios.

9.7.1 Índices de Búsqueda

Es el primer tipo de buscador que surgió. En los índices de búsqueda, la base de datos con direcciones la construye un equipo humano. Es decir, un grupo de personas va rastreando la red en busca de páginas. Vistas éstas son clasificadas por categorías o temas y subcategorías en función de su contenido. De este modo, la base de datos de un índice de búsqueda contiene una lista de categorías y subcategorías relacionadas con un conjunto de direcciones de páginas web que tratan esos temas. (Martínez, 2013)

La consulta de un índice se realiza, pues, a través de categorías. Por ejemplo, si buscamos información sobre el Museo del Prado deberemos pinchar sobre una
secuencia de categorías y subcategorías como la siguiente: Arte / museos / pinacotecas y seguro que dentro de ésa última subcategoría hay algún enlace que hace referencia al museo del Prado.

El primer índice de búsqueda que apareció fue Yahoo! que sigue ofreciendo sus servicios.

Se puede observar que, a pesar de tratarse de un índice de búsqueda, ofrece también un espacio para introducir palabras clave (bajo el título de la web). Esto se debe a que todos los buscadores que ofrecen servicios en la red tienden a satisfacer al máximo las necesidades de los navegantes, de forma que intentan abarcar toda la gama de posibilidades. (Martínez, 2013)

Tecnología del Cliente

Como hemos explicado en el apartado tecnología del servidor, el proyecto está formado por en un servidor Apache con PHP y una base de datos MySQL. Esta elección nos permite evitar cualquier desarrollo para los terminales clientes de acceso a la plataforma ya que con un simple navegador y conexión a la red los usuarios podrán acceder fácilmente la plataforma.

Para ello se hace uso del lenguaje de programación básico que interpretan los navegadores de internet, el HTML (HyperText Markup Language) procurando cumplir con el estándar de W3C21. Para algunas funcionalidades adicionales que pueden ejecutarse directamente en el cliente como la validación de capos o la creación de calendarios para seleccionar fechas utilizaremos JavaScript. Por último, utilizaremos AJAX como un añadido para subir archivos de audio e imágenes en tiempo real al servidor web (Martínez, 2013)
9.8 Motores de Búsqueda
Temporalmente, los motores de búsqueda son posteriores a los índices. El concepto es diferente: en este caso, el rastreo de la web lo hace un programa, llamado araña o motor (de ahí viene el nombre del tipo de buscador). Este programa va visitando las páginas y, a la vez, creando una base de datos en la que relaciona la dirección de la página con las 100 primeras palabras que aparecen en ella. Como era de esperar, el acceso a esta base de datos se hace por palabras clave: la página del buscador me ofrece un espacio para que yo escriba la o las palabras relacionadas con el tema que me interesa, y como resultado me devuelve directamente un listado de páginas que contienen esas palabras clave. Por ejemplo, si utilizo un motor de búsqueda para localizar información sobre el Museo del Prado, simplemente tendré que escribir "Museo del Prado" en el espacio de búsqueda y pinchar en el botón Buscar. A continuación se me devolverá otra página con los resultados de la búsqueda: un listado con enlaces a las páginas solicitadas. (Martínez, 2013)
10.- Procedimientos y Descripción de las Actividades Realizadas

El Modelo de prototipos, pertenece a los modelos de desarrollo evolutivo. El prototipo debe ser construido en poco tiempo, usando los programas adecuados y no se debe utilizar muchos recursos.

El diseño rápido se centra en una representación de aquellos aspectos del software que serán visibles para el cliente o el usuario final. Este diseño conduce a la construcción de un prototipo, el cual es evaluado por el cliente para una retroalimentación; gracias a ésta se refinan los requisitos del software que se desarrollará. La interacción ocurre cuando el prototipo se ajusta para satisfacer las necesidades del cliente. Esto permite que al mismo tiempo el desarrollador entienda mejor lo que se debe hacer y el cliente vea resultados a corto plazo.

10.1 Preparación Preliminar del Proyecto

Análisis

Se determinaron los elementos que se necesitarían para poder realizar la primer etapa, la cual consistió en la necesidad de obtener el programa y material didáctico textos y actividades en español- tzotzil, el cual son manejado en el CIS9, institución en la que se realiza la investigación, además de tomar una metodología de trabajo que esté acorde al cronograma planteado en el anteproyecto de residencia.

Así pues se analizó el material didáctico que los profesores utilizan en clase, los libros de texto que maneja en el presente plan y se utiliza en las aulas y se observó
la metodología de enseñanza de los maestros y se concentraron los resultados del análisis para poder programar el prototipo.

10.2 Metodología de Trabajo y Revisión de Contenido

Comunicación
Se determinó como se trabajaría conjuntamente los residentes del Instituto con el jefe de la oficina de métodos de enseñanza y traducciones, así como la asignación de las tareas, tiempos, metas y objetivos, así mismo se logró analizar detenidamente los elementos primordiales en los que se basa el *programa y plan de estudios 2010* en comparación con planes y programas anteriores (plan y programa 1993 y educación indígena) que se recopilaron en el objetivo anterior, se logró obtener los libros de texto y actividades de los programas de estudio y se analizaron detenidamente comparando las metodologías, actividades y elementos pedagógicos que se incluían en estos.

10.3 Diseño de Propuesta

Diseño Rápido
Al contar con el análisis de la materia, se logró aislar los elementos lúdicos en lo que se basa el programa y plan de estudio 2010 y que van de acuerdo a las competencias que indican la SEP y los determinados de acuerdo a la investigación previa. Con esto se seleccionaron tres actividades para la elaboración del software educativo, que son: *Adivinanza, Cuento, Juego con oraciones*, y por último se agregó el módulo de búsqueda.
10.4 Construcción del Prototipo
A partir de que se seleccionaron las actividades óptimas para el software se diseñaron por medios de diagramas de flujo el funcionamiento de estas para determinar si podrían ser programadas.

10.5 Desarrollo del Software
Habiéndose aprobado los esquemas y diagramas por la M.C. Imelda valles López se ha procedido a programar las actividades de forma estática e independiente con texto, imágenes, y sonido de forma rígida únicamente probando el funcionamiento de la interfaz, motor de búsqueda, y la base de datos.

10.6 Retroalimentación
Para la evaluación del prototipo se tomó una muestra representativa, de los Maestros del CIS9, donde los parámetros de evaluación, mostraron que tan eficiente era el software.
Se incluyeron imágenes, sonidos y texto para las actividades incluidas en el muestreo.
11.- Resultados Planos, Gráficas, Prototipos y Programas

11.1 Diagramas de Flujo e Imágenes del Prototipo.

El software educativo está dividido en 2 partes que es diseño de las actividades y el control del resultado de las actividades; donde el instructor o Maestro del grupo juega un papel importante ya que él se encarga de diseñar las actividades que se cargarán en el software. El profesor también tiene el control que genera la actividad; y por medio de la búsqueda accede a ella.

El profesor realizara en la parte del diseño la actividad, (cuenta cuentos, adivinanza u oración), en esta parte el agregara texto, imágenes, y audio para generar las actividades.

En el módulo de búsqueda el software arrojará un resultado donde mencione el título de la actividad, el texto en español, su traducción al tzotzil, la imagen o imágenes y el audio tanto en español como tzotzil.
El Maestro accede únicamente a la actividad que fue previamente diseñada por medio del módulo de búsqueda.
Al término del diseño el maestro dará de alta la actividad; esta será enviada a través de internet al servidor, al cual se conectará la interfaz del buscador y desplegará la actividad previamente diseñada. Por su parte maestro únicamente puede ver y acceder a las actividades que fue previamente diseñada por el o por cualquier otro, por medio de su interfaz (buscador).

11.2 Diagrama de Casos de Uso del Prototipo
En el sistema existe un usuario (Maestro) el cual será encargado de diseñar, crear y modificar y buscar las actividades.
11.3 Plantillas de Casos de Uso

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Insertar Texto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actor</td>
<td>Maestro</td>
</tr>
<tr>
<td>Propósito</td>
<td>Ingresar palabra u oración para su búsqueda en el sistema</td>
</tr>
<tr>
<td>Condición Inicial:</td>
<td>El maestro tendrá que ingresar una palabra</td>
</tr>
</tbody>
</table>

Flujo de eventos

<table>
<thead>
<tr>
<th>Número</th>
<th>Actor</th>
<th>Sistema</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ingresa una palabra al buscador, selecciona el tipo de actividad a buscar y presiona el botón de búsqueda</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Buscar Actividad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actor</td>
<td>Maestro</td>
</tr>
<tr>
<td>Propósito</td>
<td>Buscar un resultado en la base de datos que coincida con la palabra ingresada</td>
</tr>
<tr>
<td>Condición Inicial:</td>
<td>El tipo de actividad debe estar seleccionado y haber presionado el botón de búsqueda</td>
</tr>
</tbody>
</table>

Flujo de eventos

<table>
<thead>
<tr>
<th>Número</th>
<th>Actor</th>
<th>Sistema</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>El sistema busca la actividad correspondiente a la oración ingresada</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>El sistema despliega mediante una tabla el o los resultados de la búsqueda.</td>
<td></td>
</tr>
<tr>
<td>Nombre:</td>
<td>Nueva Actividad</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>Actor:</td>
<td>Maestro</td>
<td></td>
</tr>
<tr>
<td>Propósito:</td>
<td>Crear una nueva actividad</td>
<td></td>
</tr>
<tr>
<td>Condición Inicial:</td>
<td>El maestro tendrá que ingresar el nombre de la nueva actividad y los parámetros correspondientes</td>
<td></td>
</tr>
</tbody>
</table>

Flujo de eventos

<table>
<thead>
<tr>
<th>Numero</th>
<th>Actor</th>
<th>Sistema</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ingresa el nombre para la nueva actividad</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Registra el nombre de la actividad en la base de datos.</td>
</tr>
<tr>
<td>3</td>
<td>Ingresa el texto, carga las imágenes, audio y guarda la actividad.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Actualiza la base de datos</td>
</tr>
</tbody>
</table>
11.4 Diagrama de Bloques
A continuación se presenta de forma sencilla el funcionamiento del sistema, planteado en la propuesta técnica.
11.5 Diseño de la Base de Datos para el Prototipo

El diseño de la base de datos para el prototipo está basado en el simple control y manejo de las distintas actividades que se diseñan. La tabla “datos_generales” tiene el control de todas las actividades a través de una clave primaria que comparte con las tablas “adivinanzas”, “oraciones” y “cuenta_cuentos” que guardan la información de dichas actividades (imágenes, sonido y textos).
11.6 Software De Actividades Didácticas para Lengua Indígena (SDADLI)
En la siguiente imagen se muestra la pantalla de inicio del sistema, en donde podemos observar los usuarios que ingresan, alumnos y maestros, este último es en el que nos enfocamos.

Una vez iniciada la sesión, el maestro puede crear actividades y asignarlas a un grupo de alumnos para que estos las desarrollen y posteriormente el maestro pueda ver los resultados obtenidos.
11.7 Pantallas del Prototipo Uno.

Menú
El primer prototipo es el menú del maestro el cual muestra las diferentes secciones a la que puede entrar el usuario. **text box (nombre)** especifica la actividad a buscar, **text box (Tipo)** elige el tipo de actividad (cuenta cuentos, adivinanzas, oraciones). Botón buscar uno (busca una actividad dependiendo de la palabra introducida en el **text box nombre**), botón buscar todos (muestra el título de todas las actividades contenidas en la base de datos).

Ver Actividades

Al realizar la búsqueda despliega un listado de actividades que coincidan con el nombre y el tipo de actividad buscada.
11.8 Pantallas del Prototipo Dos

Menú
El segundo prototipo es el menú del maestro el cual muestra las diferentes secciones a la que puede entrar el usuario.

Crear Actividad
En esta sección escribiremos el nombre nuestra actividad a crear y al dar click en "Crear Actividad" nos enviara a una plantilla de actividades.
Diseño de Actividad

Diseño de actividad La pantalla de diseñar actividad se realizó siguiendo los protocolos iniciales, el maestro podrá diseñar las actividades.
Buscar Actividad

En esta pantalla se agregaron algunas opciones para filtrar la búsqueda de actividades tipo, cuenta cuentos, adivinanzas y oraciones, al ingresar una palabra se desplegar todas las actividades existentes del tipo previamente seleccionado.
12.- Conclusiones y Recomendaciones

Como se mencionó en un principio, el sistema desarrollado es la continuación de un proyecto previo, por lo cual se tenía contemplado contar con apoyo, materiales y recursos. Sin embargo debido a diferentes adversidades, no fue posible desarrollar el proyecto dentro del Centro de integración social No.9 en el municipio de Zinacantán, institución donde fue desarrollado el proyecto que nos precede y tiene un convenio de colaboración con el Instituto Tecnológico de Tuxtla Gutiérrez.

A pesar de las dificultades para trabajar con el centro de integración, quizá la motivación más importante para continuar con el proyecto fue que actualmente las escuelas indígenas están recibiendo apoyo tecnológico de diferentes instituciones y no se están aprovechando porque no hay materia informática en lenguas indígenas. Como se hizo notar en los puntos anteriores los objetivos específicos fueron alcanzados satisfactoriamente lo cual da paso a dejar las siguientes recomendaciones. Este proyecto no debe quedarse estático, por haberse desarrollado en una plataforma web tiene la posibilidad de seguir creciendo a lo largo del tiempo, incrementando los módulos de desarrollo de actividades, agregar nuevas funciones y la posibilidad de adaptarse a nuevos métodos de enseñanza. La posibilidad de adaptar el sistema a cualquier lengua hace posible que este sea usado en escuelas de diferentes regiones indígenas del estado o del país.
13.-Bibliografía

aula21. (s.f.). Obtenido de aula21: http://www.aula21.net/tallerwq/buscadores/busca1or1.htm

Martínez, N. J. (mayo de 2013). *diseño de paginas web-noche*. Obtenido de http://nelsonjuliaomartinez.overblog.com/dise%C3%B1o-de-paginas-web-noche

slideshare.net. (s.f.). Obtenido de http://www.slideshare.net/Helmilpa/estudio-comparativo-de-php-aspnet-y-java

14.- Anexos