INSTITUTO TECNOLÓGICO DE TUXTLA GUTIÉRREZ

ACTIVIDAD ANTIFÚNGICA DE EXTRACTOS DE *Baccharis glutinosa* Pers. SOBRE LA ROYA (*Hemileia vastratix*) DEL CAFETO: ENFOQUE METABOLÓMICO Y GÉNICO

TESIS COMO REQUISITO PARCIAL PARA OBTENER EL GRADO DE DOCTORA EN CIENCIAS DE LOS ALIMENTOS Y BIOTECNOLOGÍA

PRESENTA:
MC. EN IBQ. ANAYANCY LAM GUTIÉRREZ

DIRECTOR DE TESIS
DR. VÍCTOR MANUEL RUÍZ VALDIVIEZO

CO-DIRECTOR
DR. EDUARDO RAYMUNDO GARRIDO RAMIREZ (INIFAP)

TUXTLA GUTIERREZ CHIAPAS NOVIEMBRE DE 2019
Agradecimientos

Al Tecnológico Nacional de México (TecNM, Mexico), por el financiamiento ‘6211.17’ otorgado para la realización de este proyecto: “ACTIVIDAD ANTIFÚNGICA DE EXTRACTOS DE *Baccharis glutinosa* Pers. SOBRE LA ROYA (*Hemileia vastratix*) DEL CAFETO: ENFOQUE METABOLÓMICO Y GÉNICO”.

Al Consejo Nacional de Ciencia y Tecnología (CONACYT) por la beca nacional 428547 y el apoyo de beca mixta otorgadas.

Al Instituto de Ciencia Tecnología e Innovación (ICTI) del estado de Chiapas, por el financiamiento otorgado.

Al Centro de Investigação das Ferrugens do Cafeeiro (CIFC) /Instituto Superior de Agronomía/Universidad de Lisboa, Portugal, por aceptarme para la realización de la estancia académica internacional así como a la Fundação para a Ciência e a Tecnologia (FCT), Portugal, por el apoyo financiero a la Unidad de Investigación LEAF (UID/AGR/04129/2013) y al proyecto PTDC/BIA-MIC/171672014. En especial quiero reconocer la calidez humana, científica y profesional de la Dra. Helena Gil Azinheira y el apoyo académico-científico de la Dra. Maria Do Céu Silva que me acompañaron en todo momento. Así como a los Dres. Leonor Guimares, Vítor Várzea, Silvia Tavares, Andrea Loureiro, Ana Paula Pereira, Inês Diniz e Idolina, por aceptarme dentro de su grupo de trabajo como un integrante más compartiendo sus experiencias y conocimientos con familiaridad.

Al Centro de Investigación de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Unidad Irapuato, México a través del apoyo técnico-científico recibido por el Laboratorio de Bioquímica y Análisis Instrumental dirigido por el Dr. Robert Winkler.

Al Dr. Víctor Manuel Ruiz Valdiviezo, por su siempre oportuna gestión, apoyo, dirección y voto de confianza para la realización de éste proyecto.

Al Dr. Eduardo Raymundo Garrido Ramírez, por su profesionalismo ético, apoyo técnico, académico y moral, que siempre tuve.

A mis revisores: Dr. Reiner Rincón Rosales, por sus acertadas observaciones en la corrección final del trabajo de tesis. Al Dr. Federico Gutiérrez Miceli por su importante participación en cada uno de mis comités tutoriales.

A las Dras. Nancy Ruiz Lau y Selene Lagunas Rivera, por su disposición mostrada.

Y a todos los que con sus críticas objetivas y constructivas contribuyeron a la culminación de éste trabajo.
Contenido

ÍNDICE DE FIGURAS ..v
ÍNDICE DE CUADROS ...ix
RESUMEN ..x
ABSTRACT ...xi
CAPÍTULO I. INTRODUCCIÓN ...1

CAPÍTULO II.- ANTECEDENTES ..6

2.1 Roya del cafeto: generalidades ..6
 2.1.1 Aspectos biológicos: Ciclo de reproducción ...6
 2.1.2 Dispersión de la roya del cafeto ..8
 2.1.3 Clasificación taxonómica ...9
 2.1.4 Introducción en México de la roya del cafeto ..9
 2.1.5 Medidas de control en la dispersión de Hemileia vastatrix10

2.2 Metabolitos secundarios ..11

2.3 Familia de plantas con propiedades antifúngicas ..13
 2.3.1 Asteraceaes ..13
 2.3.2 Chilca (Baccharis glutinosa, Pers) ..13

2.4 Análisis de metabolitos en plantas: metabolómica ..15

2.5 Perfil metabolómico de plantas ..16

2.6 Aplicación de técnicas moleculares y genéticas en actividad antifúngica17
 2.6.1 Reacción en Cadena de la Polimerasa con Transcriptasa Reversa (RT-PCR)18
 2.6.2 Reacción en Cadena de la Polimerasa Cuantitativa (qPCR) y Reacción en Cadena de
 la Polimerasa con Transcriptasa Reversa Cuantitativa (RT-qPCR)18

2.7 Análisis de la expresión genética de genes involucrados en el mecanismo de infección
 de la roya de cafeto ...19
Actividad antiroya de MEBg: aspectos metabolómicos y génicos

CAPÍTULO III. JUSTIFICACIÓN .. 21
CAPÍTULO IV. PROBLEMÁTICA ... 23
CAPÍTULO V. OBJETIVOS ... 25
5.1 Objetivo general .. 25
5.2 Objetivos específicos .. 25
CAPÍTULO VI. METODOLOGÍA ... 26
6.1 Recolección del material vegetal: chilca ... 26
 6.1.1 Procesamiento y embalaje de muestras ... 26
6.2 Obtención de extracto metanólico de chilca .. 27
6.3 Colecta de roya (H. vastatrix) .. 27
6.4 Actividad antifúngica: efecto de altas concentraciones de MEBg sobre el porcentaje de germinación ... 28
 6.4.1 In vitro: Ensayo en hoja separada ... 28
 6.4.2 Fijación de hojas .. 29
6.5 Actividad antifúngica: efecto de bajas concentraciones de MEBg sobre el porcentaje de germinación de uredosporas de H. vastatrix .. 29
 6.5.1 In vitro: ensayo en hoja separada ... 29
 6.5.2 In planta ... 30
 6.5.3 Porcentaje de germinación y apresorio ... 30
 6.5.4 Índice de infección ... 30
6.6 Análisis de proteínas .. 33
 6.6.1 Extracción de fracciones proteicas ... 33
 6.6.1.1 Proteínas extracelulares .. 33
 6.6.1.2 Proteínas intracelulares .. 33
 6.7.2 Presencia de esterasas .. 33
 6.7.2.1 Detección citológica .. 33
Actividad antiroya de MEBg: aspectos metabolómicos y génicos

6.7.2.1.1 Preparaciones ..34
6.7.2.2 Actividad enzimática ..34
6.7.2.2.1 Detección de Isoenzimas ..34
6.8 Perfil metabolómico de plantas ..35
 6.8.1 Cromatografía de gases acoplado a masas (CG-MS) ...35
 6.8.2 Espectrometría de masas MS y MS² ...35
6.9 Perfil de Expresión Génica de H. vastatrix ...37
 6.9.1 Preparación de muestras de RNA total y síntesis de ADNc para RT-PCR37
 6.9.2 Cuantificación del gen mediante RT-qPCR ..37
6.10 Diseño Experimental ...40
 6.10.1 Ensayo en hoja separada: test preliminar evaluación del efecto de concentraciones altas de extracto ..40
 6.10.2 Ensayo de hoja separada: efecto de concentraciones bajas de extracto41
 6.10.3 Análisis bioinformático ...41
 6.10.3.1 Perfil metabolómico ..41
CAPÍTULO VII. RESULTADOS Y DISCUSIÓN ...43
 7.1 Identificación del material vegetal ..43
 7.2 Colecta de roya ...43
 7.3 Actividad antifúngica in vitro: estudio de altas concentraciones de MEBg43
 7.4 Actividad antifúngica in vitro: estudio de bajas concentraciones de MEBg47
 7.5 Actividad antifúngica in planta ..53
 7.6 Proteínas: esterasas ...58
 7.6.1 Detección citológica ...58
 7.6.2 Detección de isoenzimas ..59
 7.7 Perfil de expresión de genes ..60
 7.8 Perfil metabolómico ..68
7.8.1 Análisis por cromatografía de gases...68
7.8.2 DIESI-MS y MS2 ...72
7.8.2.1 Fraccionamiento de MEBg y preparación de la muestra.................................72
7.9 Espectros de masa adquiridos por Espectrometría de Masas de Inyección Directa por electrospray (DIESI-MS). ..75

7.9.1 Análisis multivariable de m/z en modo de ionización (+) y (-)75
CAPÍTULO VIII. CONCLUSIONES ..98
CAPÍTULO IX. BIBLIOGRAFÍA ...99
CAPÍTULO X. ANEXOS ..109
ÍNDICE DE FIGURAS

Figura 1. Avance de infección, por presencia de roya, en tejido foliar. Fuente propia. 6
Figura 2. Riesgo de la roya del cafeto en relación a la fenología del cafeto (SAGARPA, 2013)... 7
Figura 3. Clasificación de fitoquímicos basados en la vía de síntesis (Dewick, 2009).......... 12
Figura 4. *Baccharis glutinosa* (Fuente propia)... 14
Figura 5. Zona de colecta de la especie vegetal de estudio ... 26
Figura 6. Zona de colecta de las uredosporas de *H. vastatrix* .. 28
Figura 7. Microfotografía de uredosporas of *H. vastatrix*, microscopio de contraste de fases: Objetivo 100X. ... 43
Figura 8. Efecto de los extractos metanólicos de raíces de *B. glutinosa* sobre el % de germinación de uredosporas de *Hemileia vastatrix*. Prueba de Tukey (*p*<0.05). Las letras mayúsculas indican hojas fijadas: A) Testigo: s/inóculo y s/tratamiento; B) Control positivo c/inóculo y s/tratamiento; C) Control negativo: oxicloruro de cobre y c/inóculo; D) 100 mg·mL⁻¹ E) 270 mg·mL⁻¹; F) 750 mg·mL⁻¹. *p* < 0.05... 44
Figura 9. Efecto de los extractos metanólicos de raíces de *B. glutinosa* sobre el % de germinación de uredosporas de *Hemileia vastatrix* con respecto a las h transcurridas. Las letras mayúsculas indican hojas fijadas: A) Testigo: s/inóculo y s/tratamiento; B) Control positivo c/inóculo y s/tratamiento; C) Control negativo: oxicloruro de cobre y c/inóculo; D) 100 mg·mL⁻¹; E) 270 mg·mL⁻¹; F) 750 mg·mL⁻¹. *p* < 0.05.. 45
Figura 10. UREDOSPORAS de *H. vastatrix* bajo microscopio de contraste: Azul de tripán 40X, Cámara Canon G10 100X zoom 5X PH.. 46
Figura 11. *In vitro*: Efecto de MEBg sobre la capacidad de germinación de uredosporas de *H. vastatrix*. Tratamiento ensayado: NC= control negativo, 1, 5, 10, 25, 50, 100 y 200 mg·mL⁻¹ de MEBg. Los valores fueron expresados como promedio±SD. *p* <0.05 de acuerdo a prueba de Tukey. .. 48
Figura 12. *In vitro*: Efecto de MEBg sobre la capacidad de germinación de uredosporas y de formación de apresorio de *H. vastatrix*, 24 h después de inocular. Tratamiento ensayado: NC= control negativo, 1, 5, 10, 25, 50, 100 y 200 mg∙mL⁻¹ de MEBg. Los valores fueron expresados como promedio±SD. *p*<0.05 de acuerdo a prueba de Tukey...

Figura 13. Germinación de uredosporas y poca diferenciación de apresorio, afectadas por MEBg: A) Control positivo, objetivo 20X; B) chilca 10 mg∙mL⁻¹, objetivo 40X

Figura 14. *In vitro*. Efecto de MEBg sobre la capacidad de germinación y formación de apresorio de uredosporas de *H. vastatrix*. Tratamientos ensayados: NC= control negativo, 1 y 5 mg∙mL⁻¹ de MEBg. Valores fueron expresados como promedio±SD. *p*<0.05 de acuerdo a prueba de Tukey.

Figura 15. Germinación de uredospora y formación de apresorio. 24h, control positivo. Objetivo 20X.

Figura 16. *In planta*. Efecto de MEBg sobre la capacidad de germinación y formación de apresorio de *H. vastatrix*. Tratamiento ensayado: NC= control negativo y 5 mg∙mL⁻¹ de MEBg. Valores fueron expresados como promedio±SD. *p*<0.05 de acuerdo a la prueba de Tukey.

Figura 17. *In vitro vs In planta*. Efecto de MEBg sobre la capacidad de germinación y formación de apresorio de *H. vastatrix*. Tratamiento ensayado: NC= control negativo y 5 mg∙mL⁻¹ de MEBg. Valores fueron expresados como promedio±SD. *p*<0.05 de acuerdo a la prueba de Tukey.

Figura 18. Proceso de infección: uredospora, tubo de germinación y apresorio, sobre tejido foliar. Corte transversal con micrótomo de congelación. Control, 7mo día. Objetivo 40X.

Figura 19. Efecto de chilca sobre las fases del proceso de infección de la roya en hojas de café.

Figura 20. A) Germinación de uredospora con presencia de apresorio 24h, vista de envés, objetivo 40X; B) Corte transversal con microtomo de congelación: apresorio, 7 d, objetivo 40X.
Figura 21. Detección citológica de esterasas: Efecto de MEBg sobre la actividad esterasas de uredosporas de *H. vastatrix*. Tratamiento ensayado: NC= control negativo y 5 mg·mL$^{-1}$ de MEBg. Valores fueron expresados como promedio±SD. $p<0.05$ de acuerdo a prueba de Tukey.

Figura 22. Actividad esterasa por deposición de azul índigo en uredosporas en suspensión tratadas con 5 mg·mL$^{-1}$ MEBg (A) y no tratado (B). Electroforesis de enfoque isoeléctrico (IEF) y (C) por caracterización de fracción de proteínas extracelulares (EC) e intracelulares (IC) de uredosporas germinadas en agua o en extracto de MEBg (5 mg·mL$^{-1}$) 59

Figura 23. Electroforesis de ARN de uredosporas de roya en gel de agarosa colectadas luego de la inoculación en hojas a las 24h, 48h, 72h y 7 días. ... 61

Figura 24. RT-qPCR Perfil de expresión de genes de *H. vastatrix*: Hv_ProtG y Hv_MPK_00858 para muestras obtenidas a lo largo del tiempo en interacción de hojas previamente tratadas con MEBg (5 mg·mL$^{-1}$), expresado como Fold Change (Y axis) por comparación de los niveles de expresión en plantas inoculadas no tratadas............................. 63

Figura 25. Vías de transducción de señales, que se sabe están involucradas en avance de infección y morfogénesis de hongos fitopatógenos (Adaptado de Deising et al., 2000). 64

Figura 26. RT-qPCR Perfil de expresión de genes *H. vastatrix*: quitina desacacetilasa para muestras obtenidas a lo largo del tiempo en interacción de hojas previamente tratadas con extracto de chilca (5 mg·mL$^{-1}$), expresado como Fold Change (Y axis) por comparación de los niveles de expresión en plantas inoculadas no tratadas.. 66

Figura 27. Mecanismo de acción de quitina-desacacetilasa (adaptado de Khattak et al., 2018). 67

Figura 28. Espectro de masas de metabolitos identificados en fracción metanólica. Espectrómetro de masa de cuadropolo Waters Corporation- Micromass ® ZQTM.............. 73

Figura 29. Espectro de masas de metabolitos identificados en fracción hexánica. Espectrómetro de masa de cuadropolo Waters Corporation- Micromass ® ZQTM.............. 74

Figura 30. Espectro de masas de metabolitos identificados en fracción en acetato de etilo. Espectrómetro de masa de cuadropolo Waters Corporation- Micromass ® ZQTM.............. 74
Actividad antiroya de MEBg: aspectos metabolómicos y génicos

Figura 31. Gráfico de dispersión de los metabolitos identificados en los extractos de raíces ANOVA unifactorial, prueba de Tukey (p<0.05). Puntos en rojo representan las relaciones m/z que tuvieron diferencia estadística al compararlas entre las 3 fracciones.......

Figura 32. Análisis de componentes principales (PCA) de todos los metabolitos detectados en extractos de raíces de Baccharis glutinosa...

Figura 33. Score plot del Análisis de Componentes Principales de todos los metabolitos detectados en Baccharis glutinosa...

Figura 34. “Heatmap”: análisis agrupado realizado en MetaboAnalyst 4. Usando espectros DIESI(+) MS de los metabolitos obtenidos en tres fracciones diferentes de los MEBg. El análisis fue realizado usando el método de distancia euclidiana con un algoritmo de agrupamiento “Ward” después de la normalización de la muestra mediante la escala de Pareto...

Figura 35. 25 Metabolitos más importantes identificados en MEBg por PLS-DA en Metaboanalyst 4.0, modo positivo...

Figura 36. MS²: Patrón de fragmentación m/z=156, 30eV. Espectrómetro de masas con trampa de iones Thermo Scientific LCQ FleetTM Ion Trap...

Figura 37. Objetivos diana potenciales en proceso de infección de H. vastatrix...

Figura 38 Corte histológico, uredospora sobre tejido foliar Objetivo 40X...

Figura 39. Compuestos bioactivos de MEBg y su interacción molecular con proteínas transmembranales de uredosporas de H. vastatrix. Adaptado de Wink, 2015...
ÍNDICE DE CUADROS
Cuadro 1. Escala de infección de roya (H. vastatrix) CIFC... 31
Cuadro 2. Características de primers y amplicones para H. vastatrix estudiados por RT-qPCR .. 39
Cuadro 3. Diseño de experimento: evaluación de altas concentraciones de MEBg 40
Cuadro 4. Diseño de experimentos: evaluación de bajas concentraciones de MEBg 41
Cuadro 5. Calidad de la extracción de ARN en el control, en función a la cuantificación en Nanodrop .. 62
Cuadro 6. Calidad de la extracción de ARN en el tratamiento a una concentración de 5 mg·mL⁻¹ en función a la cuantificación en nanodrop... 62
Cuadro 7. Abundancia relativa de los metabolitos presentes en los extractos hexánicos de Chilca analizados por CG-MS ... 69
Cuadro 8. Abundancia relativa de los metabolitos presentes en los extractos metanólicos de chilca, analizados por CG-MS ... 71
Cuadro 9. Elección de disolventes de acuerdo a la señal de intensidad relativa, espectrómetro de masa de cuadropolo Waters Corporation- Micromass ® ZQ™ ... 73
Cuadro 10. Metabolitos más importantes identificados por MS², ESI(+). Espectrómetro de masas con trampa de iones Thermo Scientific LCQ FleetTM Ion Trap .. 83
Cuadro 11. Metabolitos más importantes identificados por MS², ESI (-). Espectrómetro de masas con trampa de iones Thermo Scientific LCQ FleetTM Ion Trap .. 87
RESUMEN

Hemileia vastatrix es el agente causal de la roya del café, la enfermedad más destructiva de *Coffea arabica*. Pérdidas económicas anuales son estimadas en 1-2 billones de USD en más de 60 países tropicales y subtropicales. Éste hongo biótrofo provoca la caída prematura de las hojas, propiciando reducción de la capacidad fotosintética y debilitamiento de árboles enfermos. Una alternativa para el combate de la roya del cafeto puede ser el uso de extractos alcohólicos de raíces de chilca, *Baccharis glutinosa*, (MEBg). A pesar de sus usos en la medicina tradicional, existe poca información científica y tecnológica sobre el uso de estos extractos, por lo anterior el objetivo de este trabajo fue evaluar la actividad antifúngica de MEBg sobre la roya del cafeto (*H. vastratix*). En una primera etapa, se obtuvieron los MEBg y luego el perfil metabolómico mediante un análisis de alta resolución por medio de Cromatografía de Gases acoplada a Espectrometría de Masas (CG-MS), Espectrometría de Masas de Inyección Directa por Electrospray (DIESI-MS) y Espectrometría de Masas de Doble Tandem (MS²). Los resultados revelaron la presencia de metabolitos de las clases furfural, ácidos orgánicos, derivados cinámicos y fenólicos. En una segunda etapa se evaluó a nivel *in vitro* e invernadero los % de germinación y apresorio de las uredosporas de *H. vastratix* mediante espectroscopia óptica, la actividad antifúngica también se confirmó a través del perfil de expresión de los genes MAPK, Gpα y CD (seis) involucrados en la colonización del hongo durante la etapa de germinación e infección de *H. vastatrix* mediante la técnica RT-qPCR. Los resultados evidenciaron que MEBg son efectivos para prevenir la germinación y diferenciación de apresorio. Se demostró que MEBg causan una represión en genes de señalización como MAPK y Gpα, en los primeros días de la infección. Este trabajo permite confirmar que los compuestos bioactivos de los extractos de raíces de *Baccharis glutinosa*, planta del estado de Chiapas, tienen actividad antifúngica contra la roya del cafeto a nivel morfológico, molecular y genético.

Palabras claves: Expresión genética, chilca, DIESI-MS, Perfil metabolómico
ABSTRACT

Hemileia vastatrix is the causal agent of coffee rust (CRL), the most destructive disease of _Coffea arabica_. Annual economic losses are estimated at USD 1-2 billion in more than 60 tropical and subtropical countries. This biotrophic fungus causes the premature fall of leaves, promoting the reduction of the photosynthetic capacity as well as the weakening of sick trees. An alternative to combat CRL may be the use of alcoholic extracts of chilca roots, _Baccharis glutinosa_, (MEBg). Despite its uses in traditional medicine, there is little scientific and technological information on the use of these extracts. Therefore the main goal in this work was to evaluate the antifungal activity of extracts from chilca (_B. glutinosa_) on coffee rust (_Hemileia vastatrix_). In the first stage, were obtained MEBg and the metabolomic profile was evaluated after by a high resolution chromatographic analysis throught of Gas Chromatography coupled to Mass Spectrometry (GC-MS), Direct-Injection Electrospray Mass Spectrometry (DIESI-MS) and Double Tandem Mass Spectrometry (MS²). The results revealed the presence of furfural, organic acids, cinnamic derivated, and phenolic compounds classes. In a second stage, the germination and appresorium percentage of the uredospores of _Hemileia vastatrix_ were evaluated in vitro and greenhouse level supporting on optical spectroscopy, the antifungal activity was also determined through the detection of the profile expression MAPK, Gpa and CD genes (six) involved in the colonization of the fungus at the early stage of germination and infection of _H. vastatrix_ using RT-qPCR technique. The results showed that MEBg are effective to prevent germination and differentiation of appressoria. It was also shown that the extracts of roots of _B. glutinosa_ seem to cause a repression in sight in signaling genes such as MAPK and Gpa, on the first days of infection. Therefore, the bioactive compounds of _B. glutinosa_ root extracts, plant from Chiapas, have antifungal activity against coffee rust at a morphological, molecular and genetic level.

Key words: Gene expression, Chilca, DIESI-MS, Metabolomic profile.
Actividad antiroya de MEBg: aspectos metabolómicos y génicos

CAPÍTULO I. INTRODUCCIÓN

La roya (Hemileia vastatrix) del cafeto es uno de los fitopatógenos de plantas más investigado en los últimos tiempos. El primer registro de la roya del cafeto en el hemisferio occidental es proveniente de Puerto Rico en 1903; aunque no está plenamente identificado, los historiadores mencionan que ocurrió cuando apareció en plántulas ocupadas para investigación traídas del trópico oriental a una estación experimental (Buriticá, 2010).

Con el paso de los años la variabilidad genética desarrollada por Hemileia vastatrix se ha ido ampliando; de la llegada de una raza, hoy en día se ha detectado un grupo racial bastante heterogéneo y con altos porcentajes de polimorfismo (Cristancho et al., 2009), es decir, la roya se adaptó y se está defendiendo de la selección de nuevos genotipos de cafeto resistentes.

En la actualidad existen alrededor de 45 razas del hongo las cuales han sido estudiadas principalmente en el Centro para Estudios de la Roya del Cafeto en Oeiras, Portugal (CIFC). En las regiones cafetaleras de África las razas I, II, III, VII y XV atacan los cafés arábicas, mientras que las razas IV, V y VI parasitan al café robusta (Gichuru et al., 2012; Hindorf y Omondi, 2011). El control de la enfermedad se realiza principalmente con fungicidas químicos cúpricos (oxido cuproso, oxicloruro de cobre, hidróxido de cobre) y orgánicos (cloronitrilos, N-(triclorometiltio)ftalimida, Dimetilditiocarbamato de zinc, Ditiocarbamatos, Urbacid etcétera), pero ha demostrado ser inconveniente poco efectivo y peligroso para el ambiente (Muhammad et al., 2015; Yoon et al., 2013).

En México existen condiciones que permitieron el establecimiento de la roya del cafeto desde 1981 (SENASICA, 2013) por lo tanto, el riesgo potencial es vigente ante alguna
eventualidad que pudiera detonar el resurgimiento de brotes atípicos de la roya del café en las principales áreas cafetaleras de México. Durante el mes de octubre de 2012, en diferentes fincas cafetaleras de Oaxaca, Chiapas y Veracruz se presentaron condiciones climáticas favorables para el desarrollo de la enfermedad, lo cual generó la presencia de focos infecciosos que se controlaron por la fenología del cultivo y/o con aplicación de fungicidas (SENASICA, 2013), sin embargo, no han sido reportados con el grado de efectividad esperado ya que en 2013 el cultivo alcanzó las 737 mil hectáreas cultivadas, con un valor de casi 6000 mdp, 30% menos de producción respecto al 2012 (Panorama del café, 2014; Avelino et al., 2015). Cabe señalar que desde 1989 al año 2013, Avelino y Rivas (2013) y Cristancho et al., (2012), reportaron el periodo 2012-2013 como el de mayor incidencia de roya del cafeto para países de Centroamérica, Caribe, Perú, Ecuador y México.

La necesidad de una conciencia mundial sobre revertir la grave tendencia actual hacia el deterioro ambiental y de la salud de los consumidores por el uso indiscriminado de insecticidas, pesticidas y plaguicidas, han puesto de relieve la importancia de modificar las formas de control fitosanitario pre y poscosecha de frutos, a través de la aplicación exógena de biomoléculas extraídas de plantas con actividad fungicida o bien promoviendo el aprovechamiento in planta de biofungicidas naturales.

A menudo, estas sustancias extraídas, de especies vegetales, sirven como mecanismos de defensa de la planta ante microorganismos, insectos, patógenos, predadores, o incluso condiciones ambientales desfavorables como altas temperaturas, o sequía (Nerio et al., 2010; Duke et al., 2010; Marín y Céspedes, 2007). Las plantas pueden ser utilizadas como tal, o en partes (raíces, tallos, hojas), o ser procesadas para extraer los metabolitos secundarios. Altas concentraciones de metabolitos secundarios en plantas indican más resistencia (Das y Gezici et al., 2018). En la actualidad los metabolitos secundarios se clasifican basándose en la estructura química (tales como presencia de anillos, estructura básica de carbohidratos simples, etcétera), por su composición (conteniendo nitrógeno o no), su solubilidad en varios solventes, así como por la ruta por la cual son sintetizados. Básicamente son clasificados dentro de las cuatro categorías mencionadas (Das y Gezici, 2018; Marín y Céspedes, 2007; Bakkali et al., 2008).
El estudio de especies vegetales con potencial como insecticidas naturales o bioinsecticidas y biofungicidas ha ido incrementando progresivamente, ya que están siendo utilizados en gran medida debido a que son menos tóxicos para los humanos que la mayoría de las sustancias químicas sintéticas (Duke et al., 2010; Yoon et al., 2013), mismo que a la vez es de importancia si consideramos la demanda y auge de la agricultura orgánica en la actualidad y la necesidad imperante de buscar alternativas que permitan el control de hongos de repercusión agrícola. Desde que comenzó el estudio de diversas especies de plantas han sido procesados alrededor de 100,000 metabolitos secundarios con actividad biológica (Nkomo et al. 2014; Oksman y Inzé, 2004).

El estudio de la flora aromática y medicinal de Chiapas ofrece la oportunidad de ampliar el conocimiento sobre su probable uso como controladores biológicos debido a que son poco conocidas, y a que se tienen varias plantas con enorme potencial, mismas que son utilizadas de manera empírica.

La chilca (Baccharis glutinosa), es una especie vegetal común ocupada en México para el tratamiento de fiebre, reumatismo, desórdenes digestivos y ginecológicos del cual se han probado extracciones con disolventes orgánicos de las partes aéreas demostrándose la inhibición de la β-1.3-glucanasa extraída de los hongos fitopatógenos del maíz Aspergillus flavus y Fusarium moniliforme, al actuar como inhibidor competitivo (Buitimea et al., 2013) sin embargo para nuestro conocimiento (Web of Science, 2019-06-12) existen pocos reportes relacionados con la composición fitoquímica y actividad como antifúngico. En lo que respecta a la roya, Silva et al. (2014) evaluaron el efecto de diversas especies vegetales (Allium sativum, Vernonia polysphaera, Cymbopogon citratus, Cymbopogon nardus, Cordia verbenácea, Eucalyptus crrtriodora, Ricinus communis, Azadirachta indica, Piper hispidinervum y Syzygium aromaticum) sobre esporas germinadas y no germinadas y además determinó el crecimiento micelial de otros hongos de manera in vitro.

Por lo anterior, el presente trabajo propone la evaluación del efecto inhibitorio de los extractos alcohólicos de las raíces de B. glutinosa, sobre el porcentaje de germinación de uredosporas y la formación de apresorio del hongo biotrófico H. vastatrix apoyando los resultados anteriores con la obtención del perfil de expresión de genes de las uredosporas en contacto con los MEBg durante las primeras h de infección, y la identificación de los
principales metabolitos presentes en los MEBg. En orden de explicar la importancia de las técnicas moleculares y espectrométricas que se consideran en éste trabajo, en una primera instancia se pretende realizar el análisis del comportamiento de las uredosporas, vinculando la expresión de los genes que se expresan en la etapa temprana del proceso infectivo del hongo como respuesta a la exposición de los extractos. Lo anterior basado en reportes de la literatura donde en análisis previos a hongos, específicamente efectuado al Género Fusarium, se ha demostrado que mediante un análisis de microarreglo de ADN y ARN puede llegar a determinarse los genes de expresión relacionado con la biosíntesis de los metabolitos específicos que los hongos producen ante una situación de estrés (Kyong et al., 2012; Ma et al., 2010; Schulze et al., 2001), en la actualidad el análisis genómico de hongos se ha ido generalizando ampliamente (Meyer, 2008; Nocker et al., 2007, Güldener et al., 2006) de la misma forma se han evaluado nuevos fármacos en hongos (Duke et al., 2010) sin embargo no existen estudios similares en H. vastatrix, aunque se han realizado perfiles genómicos del mismo para identificar genes relacionados con la formación de apresorio, en las etapas tempranas de infección del hongo (Loureiro et al., 2015; Talinhas et al., 2014). Por lo tanto, con la determinación del nivel de expresión genética por RT-qPCR que se propone en éste trabajo se podrá conocer si existe una alteración en el perfil de expresión de genes, de las uredosporas, involucrados en procesos metabólicos importantes y que pudiesen estar siendo influenciados por el contacto de los extractos metanólicos de chilca (B. glutinosa), propuestos en éste trabajo.

Por otro lado, el efecto de extractos y aceites esenciales vegetales en hongos de importancia agrícola suele acompañarse del estudio fitoquímico, para la identificación de compuestos activos de interés, el cual ha evolucionado hasta lo que se denomina perfil metabolómico (Schuhmacher et al., 2013; Moussaieff et al., 2013). En la actualidad la innovación en las técnicas existentes hacen posible la obtención de listados de compuestos químicos identificados y cuantificados mediante el uso de técnicas altamente sensibles, permitiendo que en los tiempos más cortos posibles los métodos robustos sean capaces de analizar un largo número de metabolitos presentes (Pyke et al., 2015; Yuliana et al., 2011). Las técnicas de análisis instrumental tal como la cromatografía de gases y la de líquidos (GC-MS y LC-MS), acopladas a espectrometría de masas, o
espectrometría de masas de inyección directa por electrospray proveen una visión más profunda del metaboloma de una planta en particular (Alvarez-Rivera et al., 2019). Ese vasto número además genera un problema nuevo en la identificación de estructuras químicas de compuestos no conocidos, por lo que suele ocuparse la espectrometría de masas en doble tándem para generar la huella dactilar de cada molécula permitiendo así, obtener los patrones de fragmentación específicos para cada metabolito. Es así como, el estudio de los mecanismos de ruptura de las moléculas proporciona una aproximación “putativa” del metabolito presente en la muestra de estudio pudiendo asignarle una clasificación química basada en su estructura sugerida (Alvarez-Rivera et al., 2019; Nkomo et al., 2014; Liseć et al., 2006). Por lo cual también es importante en la realización de éste trabajo conocer la composición química de los extractos vegetales, el cual fue efectuado mediante el uso simultáneo de CG-MS, DIESI-MS y MS² que permitió caracterizar el perfil metabolómico completo de las raíces de la planta propuesta, de la cual no existe referente metodológico actualizado para conocer las sustancias químicas presentes en ellas. Lo cual ofrecerá una visión profunda sobre el metaboloma de las raíces de B. glutinosa de importancia biotecnológica contra hongos fitopatógenos del café.
Actividad antiroya de MEBg: aspectos metabolómicos y génicos

CAPÍTULO II.- ANTECEDENTES

2.1 Roya del cafeto: generalidades

Existen 45 razas de Roya, *Hemileia vastatrix*, que atacan a especies del género *Coffea*, especialmente a las plantas de la especie Arábica y también a otras del mismo género, pero con diferentes grados de virulencia (Gichuru et al., 2012; Hindorf y Omondi, 2011). Las esporas son de 30μ de largo X 20μ de ancho, aproximadamente, de forma reniforme, lisas en la cara interna y rugosa en la externa, son denominadas uredosporas, y son producidas en grandes cantidades, correspondiendo al polvillo amarillo o naranja que se visualiza en el envés de las hojas de café y que es característico de esta enfermedad. Las teliosporas, cuya ocurrencia es muy baja, son de forma redondeada de 20-25μ. Los síntomas de la enfermedad inician como pequeñas manchas de 1-3 mm, translúcidas y de color amarillo claro sobre las hojas del cafeto. La lesión crece en tamaño y pueden coalescer con otras manchas, hasta formar grandes parches con abundante polvo amarillo (esporas) en el envés de las hoja, en su lado opuesto se observan como manchas amarillas. Las lesiones viejas llegan a necrosar, pero la esporulación puede continuar en el margen de las lesiones (SAGARPA, 2016; Talinhas et al., 2016).

Figura 1. Avance de infección, por presencia de roya, en tejido foliar. Fuente propia.

2.1.1 Aspectos biológicos: Ciclo de reproducción

Las condiciones ideales para su reproducción se facilitan en ambientes sombrios y niveles de humedad relativa más bien bajos, aunque la presencia de gotas de agua sobre las hojas es
Actividad antiroya de MEBg: aspectos metabolómicos y génicos

imprescindible para que las esporas germinen. No importa que esta agua sea de lluvia, rocío, o incluso de riego, siendo en la oscuridad completa cuando la Roya demuestra su máxima capacidad de germinación. Los límites de temperatura óptimos para su desarrollo se enmarcan entre los 21 y 25º C. Dentro de estos parámetros, la germinación de las esporas tiene lugar entre las 3 y 4 h posteriores de su liberación. Por debajo de 16º C y por encima de los 27º C las esporas no germinan (Gouveia, 2005).

La ubicación del terreno, y más concretamente la altura de éste sobre el nivel del mar es otro factor determinante en el ciclo de vida de la Roya y en los daños que causa. A mayor altura, las temperaturas son más frescas y por tanto, la Roya tiene menos posibilidades de vivir o de desarrollarse. Lo mismo sucede en las zonas bajas tropicales. Por esta razón, las variedades arábicas, que se suelen cultivar generalmente en zonas intermedias son las que sufren mayores ataques. A esto hay que agregar la susceptibilidad propia de cada género y especie (Galí, 2014).

Figura 2. Riesgo de la roya del cafeto en relación a la fenología del cafeto (SAGARPA, 2013).
La roya tiene un ciclo que comienza en junio y termina en mayo; el pico de la enfermedad se da generalmente en diciembre, pudiendo provocar la defoliación casi total de la planta y el secamiento de las ramas. Afecta hojas maduras principalmente. Según el grado de severidad puede provocar una intensa caída de hojas y pérdidas en la producción (SENASICA, 2013).

El ciclo de vida de *H. vastatrix* es comprendido de manera incompleta. El hongo sobrevive como uredospora, uridio y micelio, sin embargo la patología de la enfermedad se presenta en el estadio de Uredospora, mientras que los principales hongos del género usualmente presentan 5 estadios de espora y dos de hospederos. Las basidiosporas germinan *in vitro* pero no infectan las hojas de café (Gouveia, 2005).

2.1.2 Dispersión de la roya del cafeto

La roya es transmitida por la lluvia, el viento, el hombre, los insectos y otros animales, que transportan el polvillo amarillento que son las esporas de una planta a otra, favoreciendo así la diseminación de la enfermedad. Investigadores del Departamento Nacional de Meteorología de Brasil han informado que corrientes de aire con velocidad de 20 km/h pudieron haber traído las esporas de la roya desde África hasta las Costas de Brasil en 15 días (Virgilio y Astorga, 2015).

En algunas investigaciones (SENASICA, 2013; Virgilio y Astorga, 2015) se ha concluido que las salpicaduras de la lluvia son el agente principal, no solamente para la dispersión, sino también para la liberación de esporas. En la India se encontraron insectos de las especies *Euphysothrips subramanii* y *Scirtothrips bispinosus* que se alimentaban de pústulas de la roya y que llevaban un número elevado de esporas en su cuerpo. Existe la posibilidad de que la roya del café haya llegado de África al Hemisferio Occidental en plantas vivas. Otros medios suelen ser, el personal que trabaja en los cafetales o bien los sacos de café, que pueden ser ocasionalmente medio de transporte de las esporas de la roya (Virgilio y Astorga, 2015).
2.1.3 Clasificación taxonómica

La clasificación del agente causante de la roya del cafeto es la siguiente:
División: Eumycota
 Subdivisión: Basidiomycotina
 Clase: Teliomycetes
 Orden: Uredinales
 Familia: Pucciniaceae
 Género: Hemileia
 Especie: H. vastatrix (NCBI, 2019)

2.1.4 Introducción en México de la roya del cafeto

Las infecciones de los cafetales de la región del Lago Victoria, provincia de Niaza, en Kenia en el año 1861, y la de las plantas de la isla de Ceilán, hoy Sri-Lanka en 1868, son las dos primeras epidemias de Roya documentadas.

En Ceilán, el daño fue tan grave que los ingleses y nativos que cultivaban el café, al no conocer un método de combate y control del hongo, decidieron arrancar los cafetos y plantar té (*Thea sinensis*). En Kenia, por su parte, apostaron por un cambio de especie. Fue cuando se introdujo en ese país los canéfora, cuyo representante más importante es el Robusta (recibe el nombre de Robusta, por su mayor resistencia a la Roya) y la variedad Libérica.

La roya del cafeto llega a Brasil en 1970. En principio se dijo que por imprudencia de agricultores cacaoteros de Bahía, que visitaron África, trayendo el patógeno causante de la roya, fue ahí en donde se registró primero en pequeños cultivos de cafeto; posteriormente se determinó que estaba al menos en otros dos Estados. Más recientemente se ha insinuado que la roya, después de llegar en el año de 1950 al extremo de África occidental, de allí por las corrientes de vientos que se originan en el sur de ese continente y que finalmente tocan...
Actividad antiroya de MEBg: aspectos metabolómicos y génicos

Suramérica, fue transportada hasta Brasil. 101 años, después de su registro taxonómico, le tomo al patógeno para llegar desde África, en su centro de origen, al Hemisferio Occidental y 20 años para invadirlo totalmente de sur a norte (Buriticá, 2010).

2.1.5 Medidas de control en la dispersión de *Hemileia vastatrix*

Los cafetales tienen que estar manejados adecuadamente para garantizar el vigor y el balance nutricional de las plantas. Por tanto, parte sustancial en el manejo de la roya del café es realizar el conjunto de prácticas culturales que se recomiendan para el desarrollo adecuado del café (Virgilio y Astorga, 2015).

La distancia de plantación, la poda y el manejo de la sombra son factores que no solo afectan el desarrollo y la producción del café, sino que pueden afectar también el nivel de infección de la roya. La infección de las hojas por este hongo se favorece por la alta humedad, luz difusa y temperatura fresca, condiciones que se mantienen en plantaciones muy densas y con excesiva sombra (SAGARPA, 2013). El balance nutricional de las plantas es vital para el vigor de los mismos. La aplicación programada de abono y cal, tomando en consideración la edad de las plantaciones del café, el volumen de la cosecha, y el tipo de suelo, evitarán la debilidad de la planta. Plantaciones débiles sufrirán más el impacto de las infecciones de la roya propiciando una defoliación más severa (Rodríguez, 2012). El control de insectos y malezas es parte integral del manejo del cafetal y por lo tanto, del manejo de la roya. Ataques por insectos como el minador de la hoja propician la caída de las hojas, de manera que es necesario controlar este insecto para no tener pérdidas considerables en la producción. Por otro lado, las malezas compiten con el cultivo por alimento y pueden albergar plagas, por lo que es necesario mantenerlos bajo control (Virgilio y Astorga, 2015).

Se ha demostrado que la edad de las plantaciones y el manejo influyen de manera importante en la ocurrencia de roya. La edad de las plantaciones (>20 años) es el factor de
mayor riesgo en los eventuales impactos productivos debido al efecto de defoliación causado por la roya. El tipo de sombreado y densidad de plantación afectan directamente en las diferentes etapas del proceso infeccioso de la enfermedad (deposición, germinación, infección, colonización, esporulación y diseminación); la fertilización, pH del suelo y prácticas de podas también influyen al respecto. Huertos con fertilización deficiente, con altas densidades de plantación, follaje denso y sombreado, con alta carga de fruta, pH ácido del suelo y aunado a incrementos en la frecuencia y distribución de la precipitación y temperaturas favorables son factores que incrementan el riesgo y favorecen el desarrollo de epidemias severas por *H. vastatrix* (SENASICA, 2013).

2.2 Metabolitos secundarios

El metabolismo secundario es el conjunto de reacciones bioquímicas que se producen de forma paralela al metabolismo primario de la planta. Como parte de dichas reacciones son generados los metabolitos secundarios los cuales son compuestos orgánicos sintetizados por el organismo y no tienen un rol directo en el crecimiento o reproducción del mismo sino que cumplen funciones complementarias a las vitales, tales como comunicación intra e interespecífica, defensa contra radiación, congelación, y ataque de depredadores, patógenos o parásitos. A diferencia del metabolismo primario donde si son generadas sustancias esenciales para la supervivencia de la planta. El análisis de los metabolitos ha permitido identificar que en gran medida muchas de estas sustancias tienen importante actividad biológica (terapeútica, farmacológica, antioxidante, antiinflamatoria, antimicrobiana, entre otros), misma que ha sido aprovechada por industrias para su obtención. Un término habitualmente adquirido para referirse a los metabolitos secundarios es el de fitoquímicos que hace especial énfasis a aquéllas sustancias químicas de plantas que poseen bioactividad, sin ser compuestos nutrimentales para la planta misma. En la actualidad existen diversas clasificaciones de dichas sustancias las cuales se basan en la estructura química (presencia de anillos, azúcares), por su composición (presencia de nitrógeno), su solubilidad, así como la ruta por la cual son sintetizados (por ejemplo vía fenilpropanoides, que produce taninos). Una clasificación basada en la vía de síntesis es mostrada en la Figura 3.
Actividad antiroya de MEBg: aspectos metabólicos y génicos

Figura 3. Clasificación de fitoquímicos basados en la vía de síntesis (Dewick, 2009).
2.3 Familia de plantas con propiedades antifúngicas

2.3.1 Asteraceae

Las plantas de la familia Asteraceae están variadamente distribuidas y son consideradas la familia más grande de plantas con flores en el mundo, exceptuando a Antártica. Principalmente se caracteriza por incluir plantas herbáceas y arbustos pequeños, raramente árboles. Comprende 23, 600 especies pertenecientes a 1600 géneros con 12 subfamilias y 28 tribus (Ramos et al., 2016). La tribu Astereae incluye la subtribu Baccharidinae Less. La cual es exclusivamente americana y comprende al género Archibaccharis HEERING y Baccharis LINNAEUS, actualmente son conocidos 32 y 500 especies, respectivamente. Las plantas del género Baccharis han sido habitualmente estudiadas por su amplio espectro de actividades biológicas tales como antibacterial, antifúngica, antiprotozoa, antiviral, antioxidante, antidiabética, inmunomodulatoria, antimitagénica y quimopreventiva (Abad y Bermejo, 2007).

2.3.2 Chilca (*Baccharis glutinosa*, Pers)

En México *Baccharis glutinosa*, conocida en el dialecto indígena como chilcan ka’ o chilca es un arbusto que puede alcanzar hasta los 4 m de alto, posee hojas alternas medianas angostamente lanceoladas, a veces denticuladas, cabezuelas florales pequeñas abundantes con 5 radios florales. Comúnmente se le conoce como jarilla (Rzedowski y Rzedowski, 2001), asomiate amarillo, alzumiate y chilca.

Clasificación científica:

Reino: Plantae
División: Magnoliophyta
Clase: Magnoliopsida
Orden: Asterales
Familia: Asteraceae
Subfamilia: Asteroideae
Género: Baccharis
Especie: *B. glutinosa* Pers.

(ncbi, 2019)
2.3.2.1 *Baccharis glutinosa*: actividad biológica

La chilca (*Baccharis glutinosa*) es una especie vegetal que ha mostrado actividad antimicrobiana en *Microsporum canis*, *Microsporum gypseum*, *Trichophyton tonsurans*, *Epidermophyton floccosum*, *Sporotrix schenckii*, *Nocardia asteroides*, *Nocardia brasiliensis*, *Listeria monocytogenes* y *Clostridium perfringens* y *Proteus vulgaris* (Verástegui et al., 1996), de la misma forma se han probado extracciones con disolventes orgánicos de las partes aéreas de *Baccharis glutinosa* los cuales han confirmado la inhibición de la β-1,3-glucanasas de los hongos *A. flavus* y *F. verticillioides* al actuar como...
Actividad antiroya de MEBg: aspectos metabolómicos y génicos

inhibidor competitivo (Buitime et al., 2013). De manera tradicional ha sido usado el cocimiento de las hojas como remedio popular para tratamientos ginecológicos, desórdenes digestivos, fiebres intermitentes y en forma de fomentos para combatir los dolores reumáticos (Abad y Bermejo, 2007; Moreno-Salazar et al., 2007). Se dice que las hojas secas de esta planta, mezclados con frijoles o maíz impiden que éstos sean atacados por los insectos. La bibliografía consultada permite señalar que la información sobre la composición química acerca de esta especie es muy limitada.

2.4 Análisis de metabolitos en plantas: metabolómica

Se ha estimado que cientos de cientos de distintos metabolitos están presentes en las plantas, muchos de los cuales tienen bioactividad claramente establecida. Los estudios metabolómicos se han empleado en diferentes campos (Krastanov, 2010), ocupando los primeros lugares la Ciencia Ambiental, Ciencia de los Alimentos, Seguridad Humana y Biología de plantas (Bundy et al., 2008; Cevallos-Cevallos et al., 2009; Fukushima et al., 2009). El objetivo del análisis metabolómico es identificar el mayor número posible de metabolitos presentes, los cuales permitan comprender el sistema biológico que se encuentra bajo investigación.

Recientemente se han ido empleando diferentes términos para relacionar la definición de metabolómica tales como: perfil metabólico, huella metabolómica y huella metabólica (Dettmer et al., 2007).

La identificación de los metabolitos es un reto real, donde muchos factores juegan un papel determinante, incluyendo las herramientas analíticas ocupadas, la organización de datos, y la calidad de la adquisición de datos. La preparación de la muestra es la problemática más desestimada dentro del análisis metabolómico. Los procedimientos de extracción apropiados necesitan ser evaluados para obtener el máximo número de componentes químicos con la misma muestra. En éste sentido las clases químicas de los compuestos podrían requerir un proceso de separación que involucren solventes con diferente polaridad.

La metabolómica se apoya de modernos instrumentos, que responden a patrones de reconocimiento realizado de los datos adquiridos (de las muestras de análisis) y de ésta forma permite identificar características específicas de los metabolitos, para compararlos
con patrones definidos de características de metabolitos estándar previamente estudiados y confirmados (a través de plataformas en línea de bases de datos de las cuales dispone el analista) permitiendo con esto la identificación putativa de los metabolitos que son objeto de estudio (Vrancheva et al., 2014; Torras et al., 2010). Una técnica de análisis ampliamente usada en la actualidad es la espectrometría de masas (MS), misma que permite determinar la distribución de las moléculas de una sustancia en función de su masa. El espectrómetro de masas es un dispositivo que analiza con gran precisión la composición de elementos químicos que conforman un compuesto, mide razones masa/carga de iones, calentando un haz de material del compuesto hasta vaporizarlo e ionizar los diferentes átomos. El haz de iones producirá un patrón, el cual es específico en el detector, lo que permite analizar el compuesto. Con frecuencia es usado como detector estando acoplado a otros equipos, como los cromatógrafos líquidos de alta resolución (HPLC), cromatografía líquida de ultra-alta resolución (UPLC), cromatografía líquida de interacción hidrofílica (HILIC-GC), cromatografía de gases (CG-MS), o bien mediante espectrometría de masas de inyección directa por electrospray (DIESI-MS) pudiendo elegir el analizador de masas de acuerdo al tipo de perfil metabolómico que se desea obtener (por cuadrupolo o trampa de iones) (Bajad & Shulaev, 2011). García-Flores et al., (2015), estudiaron las variaciones de extractos de maíz en situaciones de estrés mediante el uso de DIESI-MS, encontrando un costo-beneficio de la técnica superior en comparación con otras técnicas analíticas (espectroscopía de reflectancia ultravioleta, de infrarrojo cercano, HPLC y CG-MS).

2.5 Perfil metabolómico de plantas

Existen actualmente diferentes estrategias de análisis para poder realizar un estudio metabolómico, cada uno diseñado para contestar cuestiones específicas:

Perfil metabólico (metabolite profiling): en éste el procedimiento analítico se restringe solo a identificar y cuantificar de un número predefinido de metabolitos que pueden pertenecer a una clase de compuesto específica, o bien por pertenecer a una ruta metabólica en particular (Nadella et al., 2012).
Metabolómica (metabolomics): con éste nombre se conoce al análisis exhaustivo donde todos los metabolitos de un sistema biológico llegan a ser identificados y cuantificados (Schuhmacher et al., 2013).

Análisis dirigido o diana (terget analysis): este se centra particularmente en un metabolito concreto que resulte de interés (Nadella et al., 2012).

Huelladactilar metabólica (metabolic fingerprinting): esta se suele emplear para la clasificación de muestras rápidamente, según la relevancia biológica, sin necesidad de determinar a nivel individual el origen de cada metabolito.

2.6 Aplicación de técnicas moleculares y genéticas en actividad antifúngica

Celularmente la información genética cifrada en el ADN y contenida en los genes se expresa a través de los mecanismos de transcripción y traducción, a partir del cual se producen moléculas de ARN y proteínas, respectivamente. Eventos celulares tales como la replicación, la diferenciación y la división celular y otros caracteres macroscópicos tales como rasgos fenotípicos, morfológicos, funcionales y de respuesta ante estímulos son producto de la expresión diferencial de genes. El estudio y análisis del transcriptoma es esencial para el entendimiento de la función de genes. De manera general se puede establecer que si un gen se expresa en una condición o célula determinada es porque cumple allí una función. El estudio global del transcriptoma permite también establecer patrones de regulación génica coordinada, lo que contribuye no solo a dilucidar la función y agrupamiento de varios genes bajo un estímulo o condición específica, sino también a identificar elementos promotores comunes a varios genes (Soto y López, 2012).
2.6.1 Reacción en Cadena de la Polimerasa con Transcriptasa Reversa (RT-PCR)

La reacción de PCR en unión con la transcripción reversa (RT-PCR) puede ser utilizada para el estudio de ARNm casi a nivel de una célula individual. Esta técnica puede utilizarse para determinar la presencia o ausencia de un transcripto, para estimar el nivel de su expresión y para el clonado de ADNc sin la necesidad de construir una genoteca. Consiste en la síntesis de una cadena de ADN a partir de ARNm por medio de la transcriptasa reversa (enzima extraída de virus tumoriales cuyo material genético es ARN), que utiliza ARN como molde para sintetizar una hebra de ADN. La cadena complementaria se sintetiza por PCR. Subsecuentes ciclos de PCR nos permiten tener cantidades apropiadas del ADNc para diversas manipulaciones genéticas (Ozsolak et al., 2011).

2.6.2 Reacción en Cadena de la Polimerasa Cuantitativa (qPCR) y Reacción en Cadena de la Polimerasa con Transcriptasa Reversa Cuantitativa (RT-qPCR)

La PCR cuantitativa (qPCR) se utiliza para detectar, caracterizar y cuantificar ácidos nucleicos para numerosas aplicaciones. Comúnmente, en RT-qPCR, los transcritos de RNA se cuantifican por transcripción inversa en cDNA en primer lugar, como se describió en el subtema anterior y luego se lleva a cabo la qPCR. Como en la PCR convencional, el DNA se amplifica mediante 3 pasos repetidos: desnaturalización del DNA doble cadena, unión de los primers al DNA cadena sencilla y alargamiento de las cadenas de DNA molde. Sin embargo, en la qPCR, el marcaje con compuestos fluorescentes permite la recopilación de datos a medida que la PCR avanza. Se emplea un ciclador térmico que tiene acoplado un sistema de detección capaz de captar y cuantificar la señal emitida por el informador al final de cada ciclo. Se pueden utilizar diferentes reactivos fluorescentes como agentes intercalantes (SYBR green®) que se unen a la doble cadena de ADN dando un incremento de la fluorescencia a medida que aumenta la cantidad del producto de PCR, es decir durante
Actividad antiroya de MEBg: aspectos metabolómicos y génicos

cada ciclo, se mide la fluorescencia y la señal de fluorescencia aumenta proporcionalmente a la cantidad de DNA replicado, por lo cual, el DNA se cuantifica en "tiempo real". Esta técnica tiene muchos beneficios debido a una gama de métodos y productos químicos disponibles.

2.7 Análisis de la expresión genética de genes involucrados en el mecanismo de infección de la roya de cafeto.

Los transcriptomas de *H. vastatrix* han sido analizados en interacciones compatibles con café para poder conocer los genes expresados durante la infección y para identificar potenciales genes efectores. En la ausencia de secuencias genómicas de referencia para el café o *Hemileia* se han utilizado frecuencias trinucleótidas específicas dentro de las etiquetas de secuencias expresadas (ESTs) (Fernández et al., 2012).

En estudios publicados en el año 2014 por Cristancho y et al. se propusieron la secuenciación de 8 diferentes aislados de *H. vastatrix* usando tecnología NGS (secuenciación masiva de nueva generación). En total 14,445 genes fueron organizados en 3921 familias; una proporción considerable de las proteínas predichas (73.8 %) eran homólogas de otras especies genomas Pucciniales. Se identificaron varias familias de genes relacionadas con el estilo de vida de los hongos, particularmente 483 proteínas secretadas que representan genes efectores que se ve en un futuro proporcionarán detalles importantes para descifrar la virulencia en el hongo de la roya del café.

Por otro lado, fueron identificados los genes de señalización que codifican para la proteína G subunidad α (Gp-α) y Proteína Cinasa activada por Mitógenos (MAPK), las cuales han mostrado su presencia en etapas tempranas del proceso de infección de la roya, cuando el hongo ha diferenciado la presencia de apresorio. El gen CD ha emitido señales intensas a través de un fuerte pico de expresión a los 21 dpi, el cual es relacionado con la expresión tardía de una quitina deacetilasa. Con respecto a homólogos transcritos de proteínas secretadas expresadas haustorialmente (HESPs) *M. lini*, a pesar de que han sido pobremente representados en secuencias globales, se han podido encontrar altas posiciones conservadas de Cys en homólogos HESP-C49 y CFEM contenida en HESP-178, con lo cual Fernández...
et al., en el año 2012 sugirieron que estas proteínas de hongos pueden tener un rol en la patogenicidad o en la capacidad de infección de la planta huésped.

Un gen homólogo de HESP-379 de *U. fabae* sugiere que una proteína podría ser secretada durante la interacción con *C. arabica*.

Acerca de la interacción entre planta y hongo se han establecido trabajos donde se analiza el transcriptoma de *H. vastatrix* en estadios tempranos de infección, mediante el estudio de las uredosporas y los apresorios, Talinhas et al., en el 2014 aplicaron la técnica de 454-Genome-Sequencer y los datos fueron comparados con plantas ricas en haustorios. Se identificaron 9234 transcripciones. 50% de estas no mostraron homología significativa con base de datos internacionales. Sólo 784 secuencias fueron compartidas por tres condiciones y 75% eran exclusivos de uredosporas (2146), apresorios (1479) o haloustorios (3270). La abundante transcripción identificada mediante análisis RT-qPCR para una selección de genes indicaron un particular metabolismo activo, actividad de traducción y producción de nuevas estructuras en el apresorio e intensa señalización, transporte, actividad secretora y multiplicación celular en la germinación de uredosporas lo cual ha sugerido un diálogo planta-hongo. Estudios de expresión de genes con RT-qPCR permitieron proponer un set de genes de referencia para estudios de perfil de expresión (Vieira et al., 2011). Derivado de lo anterior se ha demostrado que en las primeras etapas del proceso de infección hay genes de uredosporas implicados en la señalización del reconocimiento del huésped para interactuar e integrar diversos estímulos esenciales para el establecimiento de la biotrofia, estos genes son principalmente MAP quinasa (MAKP), subunidad α de proteína G heterotrimérica (Gpα) y quitina desacetilasas (CD) (Vieira et al., 2012)
CAPÍTULO III.- JUSTIFICACIÓN

En América Central, el café es el sustento de alrededor de 2 053 000 personas (FEWS NET, RUTA, y PROMECAFE, 2014). Con la dispersión de la roya del cafeto los impactos sociales y económicos han repercutido principalmente sobre dos grupos vulnerables en América Central: migrantes y pequeños agricultores que poseen menos de 7 hectáreas de tierra. Gran parte de esta población no es autosuficiente. Considerando además que existen pocas opciones para la generación de ingreso. La roya del cafeto por lo tanto, tiene consecuencias sobre la capacidad de las personas para acceder a la seguridad alimentaria (FEWS NET, RUTA y PROMECAFE, 2014). Ésta enfermedad afecta ya a casi la mitad de las plantaciones de Centroamérica, donde se ha perdido al menos 500,000 empleos e ingresos por exportaciones del orden de los 681 millones de dólares, según estudios de organismos internacionales (Avelino et al., 2015).

Los daños severos que causa la roya, en conjunto con la crisis económica que prevalece en el sector cafetalero, hacen sugerir un pronóstico de que se tendrán las cosechas más bajas en los últimos cincuenta años, a partir del 2013-2014 (Avelino et al., 2015), de ahí la importancia de generar proyectos que permitan conocer el comportamiento bioquímico y la expresión genética del hongo y por otro lado proponer estrategias como métodos de control eficaces alternos a las medidas convencionales, ya que el contexto de la problemática indica una variabilidad de adaptación genética sorprendente de H. vastatrix en los últimos años.

Actualmente pocos son los trabajos reportados en la literatura donde específicamente trata de probarse la actividad antifúngica de extractos vegetales sobre la roya, limitándose al estudio bajo condiciones in vitro en medio líquido, lo anterior es debido en gran medida a que H. vastatrix es una especie fúngica biótrofa y estudios de éste tipo no son fáciles de llevar a cabo ya que es necesaria la presencia del hospedante vivo (la planta de café). Por lo tanto en éste trabajo se pretende contribuir al estudio de la roya con metodologías experimentales que han sido poco exploradas (tanto a nivel in vitro como invernadero), con la finalidad de poder comprender el comportamiento bioquímico del hongo y además
confirmar la utilidad de los primers (MAPK, CD y GPa) que recientemente han sido reportados (Vieira et al., 2012; Vieira et al., 2011), y que se han catalogado como importantes para el desarrollo del hongo en los estadios tempranos de infección, pero que por vez primera son estudiados como marcadores en la patogénesis del fitopatógeno ante la presencia de un agente externo, como los MEBg.

La importancia de ésta investigación va encaminada también a la comprensión del efecto de los extractos metanólicos de raíces de Baccharis glutinosa en contacto con uredosporas de la roya ya que a través del perfil de expresión de genes y el ensayo de actividad esterasas, se podrá inferir si la presencia de MEBg irrumpen sobre la estabilidad de proteínas transmembranales, las cuales han sido señaladas como el objeto blanco perfecto en la búsqueda de nuevos agentes fungicidas que evitan el avance del proceso infectivo de hongos fitopatógenos.

Con la finalidad de contribuir en la búsqueda de nuevos productos naturales que ayuden a mitigar la propagación de la roya y que además puedan tener un efecto menos agresivo que los productos químicos en el medio ambiente. Se pretende aumentar la información técnica y científica sobre la caracterización química de especies vegetales, como la chilca, mediante el uso de tecnologías avanzadas que permitan identificar con confianza lo que podrían ser metabolitos con potencial antifúngico. Al ser Chiapas el estado que incluye cerca de la tercera parte de la flora mexicana y un 80% de las especies de árboles tropicales del país (con 8000 especies vegetales en su superficie) (Breedlove, 1986) se genera entonces un área de oportunidad interesante de explorar para poder conocer más acerca de especies vegetales de la flora nativa y de uso tradicional.
CAPÍTULO IV.- PROBLEMÁTICA

La roya del cafeto es la principal enfermedad que ataca a *Coffea arabica* representando una problemática grave por las pérdidas económicas que implica la reducción en la producción del café (a escala mundial), en los últimos años (Virgilio y Astorga, 2015). Una estrategia durable para el control de la enfermedad ha sido el uso de cultivares resistentes. El descubrimiento del “híbrido de timor”, un híbrido natural entre *C. arabica* y *C. canephora* encontrado en la Isla de Timor ha provisto de fuentes de cultivares resistentes que han sido usados por más de 30 años en varios programas de reproducción. Sin embargo, la resistencia a la enfermedad en muchos genotipos derivados de híbridos catimor están siendo perdidos (Diniz et al., 2012, Talhinhas et al., 2017). Por otro lado, el uso de fungicidas ha mostrado que puede llegar a ser muy caro y además genera contaminantes usualmente muy tóxicos para humanos y animales (Carvalho et al., 2012), sin embargo todavía son considerados una de las mejores medidas para el control de la roya cuando es acompañado de las prácticas culturales. Es así como la búsqueda y desarrollo de alternativas, a través de productos naturales eficientes, menos tóxicos y que sean económicos para controlar no únicamente la roya del cafeto, ha sido el objetivo de muchas compañías químicas en la actualidad (Costa et al., 2014: Yoon et al., 2013). Por lo tanto, la necesidad de generar nuevos fungicidas resulta importante para estudiar el efecto de metabolitos de plantas nativas, poco conocidas como *B. glutinosa*, sobre el crecimiento y desarrollo de uredosporas de *H. vastatrix*, como fuente promisoria para encontrar moléculas con actividad biológica específica sobre estadios tempranos de la infección.

La identificación de metabolitos en plantas de *B. glutinosa*, no ha sido estudiada, ya que aunque existen, unos cuantos, trabajos que reportan la actividad biológica de los extractos de hojas (Buitimea et al., 2013) y que se conocen también las propiedades medicinales (Moreno-Salazar et al., 2007) no han sido reportados los compuestos bioactivos que podrían estar influyendo dicho comportamiento y tampoco hay reportes acerca de actividad biológica de las raíces de chilca.
Actividad antiroya de MEBg: aspectos metabolómicos y génicos

El estudio de la roya en la actualidad se ha enfocado en conocer más sobre aspectos genéticos a través de análisis transcriptómicos, para identificar aquéllos genes que inciden en estadios importantes de la infección de tal forma que estudios por RT-qPCR han demostrado el involucramiento de genes, de uredosporas, que están relacionados con la cascada de señalización y que parecen ser cruciales para el establecimiento de la infección y biotrofia (Vieira et al., 2012), sin embargo por ser estudios recientes aún hay muchas áreas de oportunidad por explorar, ya que no existen reportes que correlacionen el nivel de expresión de estos genes con sustancias antifúngicas, eso queda evidenciado luego de la búsqueda en plataformas de bases de datos (web of science, 2019-07-2019), contrario a lo que ocurre con otros géneros de hongos, como el fusarium (Kyong et al., 2012; Becher et al., 2011; Schulze et al., 2001).
CAPÍTULO V. OBJETIVOS

5.1 OBJETIVO GENERAL

Evaluar la actividad antifúngica de extractos de chilca (*Baccharis glutinosa*) sobre la roya (*Hemileia vastratix* Berkeley y Broome) del cafeto considerando aspectos metabolómicos y génicos.

5.2 OBJETIVOS ESPECÍFICOS

- Determinar el efecto de extractos metanólicos de raíces de chilca (*B. glutinosa*) sobre la germinación de uredosporas de *Hemileia vastratix*.

- Analizar el perfil metabolómico de los extractos metanólicos de raíces de chilca, con potencial para inhibir la germinación de esporas.

- Analizar el efecto de los extractos de plantas sobre el nivel de expresión de los genes MAPK, CD, y Gpa involucrados en la colonización del hongo *Hemileia vastratix*.

- Determinar el efecto de los extractos de chilca sobre la actividad esterasa en el estadio temprano del proceso de infección de *H. vastatrix*.
CAPÍTULO VI. METODOLOGÍA

6.1 Recolección del material vegetal: chilca

La recolección de las plantas de chilca se llevó a cabo de forma manual, durante verano, considerando la edad fenológica en floración. Dentro de la municipalidad de San Cristóbal de las Casas de Chiapas, México con las coordenadas latitud norte 16°41’49.71 y longitud oeste 92°35’57.13. Donde prevalece la vegetación pino-encino y predomina el clima templado y cálido (clasificado como Cfb de acuerdo a Köppen y Geiber, modificado por García, 2004). La temperatura promedio es 15.1 °C y la precipitación media aproximada es de 1216 mm.

Figura 5. Zona de colecta de la especie vegetal de estudio

6.1.1 Procesamiento y embalaje de muestras

Previamente fueron tomados datos de campo, simultáneo a la recolección, donde se consideraron el lugar de la colecta, fecha, tipo de vegetación en que se desarrolla la planta, nombre vulgar, así como su utilidad entre los habitantes cercanos al área de recolección. Así también fue considerada la forma biológica de la planta (hierba, arbusto, bejuco, etcétera). La información anterior fue vaciada en una ficha de campo. Las plantas
Actividad antiroya de MEBg: aspectos metabolómicos y génicos

completas fueron transportadas, cuidándolas de no exponerlas a altas temperaturas y al contacto con agua. Los ejemplares colectados iban colocándose completos en bolsas de polipropileno de 90 x 120 cm. procurando no mantenérselas ahí por un periodo mayor de 8-10 h. Las muestras fueron procesadas a la brevedad para su uso en el Laboratorio de Biología Molecular del Instituto Tecnológico de Tuxtla Gutiérrez. Un ejemplar completo (flor, hojas, tallo y raíz) de la colecta, fue preparado mediante prensado ocupando papel estrasa, con la finalidad de deshidratar la planta sin riesgo de pudrición, realizando el cambio diario del papel para favorecer el secado (Gaviño, 2001). Una vez completado el proceso, fue entregado a la Secretaría de Medio Ambiente e Historia Natural (SeMAHN) del estado de Chiapas para la confirmación de su identidad botánica.

6.2 Obtención de extracto metanólico de chilca

Las raíces fueron reducidas a un tamaño de partícula < 0.5 mm. El tamaño de partícula de las raíces fue reducido con el uso de un molinillo de cuchilla CAPRESSO 506.05. Una vez obtenido un polvo homogéneo, se pesaran 300 g del material vegetal pulverizado y se colocaron en un recipiente de vidrio de 3.750 L al cual se le adicionó 3 L de metanol. Esta mezcla se maceró durante 24 h a temperatura ambiente, se filtró y posteriormente se centrifugó a 3000 rpm durante 10 minutos. El sobrenadante se evaporó a vacío a una temperatura de 45 ºC y se almacenó en refrigeración hasta su utilización.

6.3 Colecta de roya (H. vastatrix)

Las muestras de roya (H. vastatrix) fueron aisladas de la zona cafetalera ubicada con las coordenadas latitud norte 16°52’22.46 y longitud oeste 93°24’39.39, en la localidad de Ocuilapa de Juárez, Municipio de Ocozocuautla, Chiapas, México, donde previamente se ha identificado de manera cualitativa la presencia del hongo. Las hojas infectadas fueron transportadas en cámara húmeda hasta las instalaciones del Laboratorio en el cual se realizó la recolección de uredosporas.
6.4 Actividad antifúngica: efecto de altas concentraciones de MEBg sobre el porcentaje de germinación

6.4.1 In vitro: Ensayo en hoja separada

Se prepararon previamente en 100 mL de agua destilada una suspensión de uredosporas de 1X10⁵ de H. vastatrix agregando una gota de tween 20 (Sigma-Aldrich). Posteriormente se cortaron hojas jóvenes sanas de plantas de Coffea arabica var. Bourbón y se sumergieron durante 3 segundos en las soluciones del extracto a 100, 270 and 750 mg·mL⁻¹, respectivamente. Luego se colocaron sobre cajas Petri con base de papel filtro húmedo, con el envés de la hoja expuesto y se procedió a inocular por goteo con 1 mL de la suspensión de esporas previamente obtenida. Las cajas Petri se mantuvieron en un cuarto oscuro durante 48 h. Posteriormente, se sometieron a un fotoperíodo 12/12 a 22°C y humedad relativa del 65%. Las revisiones de las cajas se realizaron a las 4, 8, 14, 20.5, 32.5, 45.5, 69.5 y 165.5 h después de la inoculación para realizar el conteo de esporas germinadas por el método de fijación de hojas (Weeks y Padhye, 1982).
6.4.2 Fijación de hojas
Se tomaron segmentos de 1cm\(^2\) aproximadamente de la parte central de cada hoja posteriormente se les añadió 5 mL de solución Carnoy y se incubaron a 60°C por 4 h. Cumpliendo las 4 h en la estufa, se escorrió la solución Carnoy, y se agregó 5 mL de solución de lactofenol a los fragmentos, y de nuevo se incubaron a 60°C por 5 h, cumpliendo el tiempo requerido se eliminó el lactofenol. Los fragmentos se tiñeron con tripán azul al 0.2% y se dejaron a temperatura ambiente durante 1:30 h, después se lavaron con agua destilada estéril hasta eliminar por completo el colorante y se procedió a realizar los montajes. Por cada montaje se colocaron dos gotas de polivinil alcohol, se colocó el fragmento limpio y se cubrió con un cubre objeto y se dejó secar a temperatura ambiente. El mismo procedimiento se realizó por cada muestra, se etiquetaron y después se colocaron en una caja porta-montajes. Con la ayuda de un microscopio Zeiss modelo Primo Star con lente objetivo de 40X y una cámara digital marca Canon G10, fue contabilizado el número de esporas germinadas (modificado de Weeks y Padhye, 1982).

6.5 Actividad antifúngica: efecto de bajas concentraciones de MEBg sobre el porcentaje de germinación de uredosporas de *H. vastatrix*

6.5.1 *In vitro*: ensayo en hoja separada
Fue efectuado con el apoyo del Centro de Investigação das Ferrugens do Café/Instituto Superior de Agronomía/Universidad de Lisboa (CIFC) en hojas jóvenes de *C. arabica* var. Caturra. La superficie del envés de las hojas fueron asperjados a una distancia de 15 cm con extractos metanólicos de *B. glutinosa*, suspendidas en agua, usando las concentraciones de 1, 5, 10, 25, 50, 100 y 200 mg·mL\(^{-1}\), 24 h Después fueron inoculadas con uredosporas frescas de *H. vastatrix* (aislado 1065). Las uredosporas fueron esparcidas sobre la superficie del envés usando una brocha. Posteriormente el envés inoculado fue humedecido con agua destilada estéril e incubado 24 h A 24 °C en condiciones de oscuridad (Azinheira, 2005). Las hojas infectadas fueron colectadas a diferentes tiempos después de la inoculación, a 24 y 72 h.
6.5.2 In planta

Hojas jóvenes de *C. arabica* var. Caturra fueron asperjadas sobre la superficie del envés de la hoja con extractos metanólicos de *B. glutinosa*, a una concentración de 5 mg·mL⁻¹ (concentración a la cual se presentó en condiciones *in vitro* el 50% de germinación de uredosporas). Veinticuatro horas después fueron inoculadas con uredosporas frescas de *H. vastatrix* (aislado 1065) y humedecidas, siguiendo el procedimiento *in vitro* descrito en el párrafo anterior. Las hojas infectadas fueron colectadas después de la inoculación a las 24, 48, 72 y 168 h Posteriormente se efectuaron el análisis de % de germinación y apresorio. El resto del material colectado fue almacenado a -80°C hasta su uso para poder realizar el perfil de expresión de genes. El análisis *in planta* permitió evaluar el seguimiento del proceso infectivo hasta el día 39.

6.5.3 Porcentaje de germinación y apresorio

Los porcentajes de germinación y formación de apresorio fueron calculados en cada tiempo de colecta a las 24, 48, 72 y 168 h ocupando un microscopio de luz, Leica DM-2500 (Leica Microsystems GmbH, Wetzlar, Germany). Luego de la colecta, los envés de las hojas fueron cubiertos con esmalte de uña transparente sobre la superficie inoculada, una vez secadas fueron removidas y teñidas con azul-algodón-lactofenol para su montaje y posterior observación en montajes convencionales en el microscopio (Vieira et al., 2012; Silva et al., 1999). Para el conteo de las uredosporas germinadas y del apresorio formado se realizó ocupando al menos 6 campos de microscopio (objetivo 40X) teniendo como base 100 uredosporas para cada uno, por experimento. El material foliar restante infectado, fue cortado en secciones transversales con un micrótomo de congelación Leica CM1850 posteriormente se tiñeron y se montaron en algodón azul lactofenol (Silva et al., 1999) para evaluar las etapas fúngicas de post-penetración.

6.5.4 Índice de infección

En el seguimiento del proceso infectivo, el grado de lesión fue estimado para cada tiempo de lectura de acuerdo a la escala de infección reportada por el Centro de Investigação das Ferrugens do Caféeiro/Instituto Superior de Agronomía/Universidad de Lisboa (CIFC).
Cuadro 1. Escala de infección de roya (*H. vastatrix*) CIFC

<table>
<thead>
<tr>
<th>Escala de infección</th>
<th>Característica</th>
<th>Visualización gráfica</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Inmune, sin señal macroscópica que indique infección</td>
<td></td>
</tr>
<tr>
<td>Fl</td>
<td>“Manchas” (puntuación clorótica), a veces difícil de observar macroscópicamente, más visible en lupa</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>Pequeña tumefacción en el punto de penetración de roya, visible con lupa.</td>
<td></td>
</tr>
<tr>
<td>Flt</td>
<td>“Manchas” con tumefacción</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Clorosis, más o menos intensa, en el área de infección, en ocasiones acompañada de pequeñas necrosis, más sin formación de soros uredospóricos</td>
<td></td>
</tr>
</tbody>
</table>
Actividad antiroya de MEBg: aspectos metabolómicos y génicos

<table>
<thead>
<tr>
<th></th>
<th>Raros soros uredospóricos, siempre muy pequeños, por veces son distinguibles a lupa, en áreas predominantemente cloróticas, por veces acompañadas de necrosis.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pústulas uredospóricas pequeñas o medias, difusas, más bien visibles macroscópicamente, en áreas intensamente cloróticas.</td>
</tr>
<tr>
<td>2</td>
<td>Pústulas uredospóricas medias o grandes, rodeadas de clorosis</td>
</tr>
<tr>
<td>3</td>
<td>Grandes pústulas uredospóricas pudiendo presentar una leve clorosis en las márgenes de las infecciones</td>
</tr>
<tr>
<td>4</td>
<td>Reacción heterogénea, pústulas uredospóricas de tamaño muy variable, incluyendo en la apariencia diversos tipos o granos de infección con expresiones de compatibilidad e incompatibilidad</td>
</tr>
</tbody>
</table>
6.6 Análisis de proteínas

6.6.1 Extracción de fracciones proteicas

Para evaluar el efecto de los extractos metanólicos de chilca sobre las proteínas sintetizadas durante el proceso de germinación de la roya, se colocaron 10 mg de uredosporas de *H. vastatrix* (aislado 1052) en cajas Petri (*φ*=150 mm, *n*=4) y se agregaron aproximadamente a una concentración de 5 mg·mL$^{-1}$ de *B. glutinosa* y agua a la mitad, respectivamente. Luego de 24 h de oscuridad y 25°C, las esporas germinadas fueron filtradas con el apoyo de matraz Kitazato y papel filtro Milipore con un *φ*=0.45 μM.

6.6.1.1 Proteínas extracelulares

Luego de la colecta de esporas por filtración, el líquido filtrado fue congelado a -80°C para posteriormente lyophilizarlo. Los exudados se resuspendieron en glicerol al 10% y posteriormente concentrados y dezalinados en membranas Vivaspin (2 mL)(Sartorius, 10 000MW). Alícuotas fueron conservadas en glicerol al 10% en condiciones de -20°C.

6.6.1.2 Proteínas intracelulares

Las uredosporas germinadas, colectadas como se describió anteriormente, se utilizaron para la extracción de las proteínas intracelulares. La fracción proteica de las uredosporas germinadas se extrajo en mortero, con 200 mg de arena y con tampón Tris-HCl pH 7.6 con KCl 0.5 M. La solución proteica obtenida fue concentrada, desalinizada y guardada en alícuotas a -20°C.

6.7.2 Presencia de esterasas

6.7.2.1 Detección citológica

En ésta determinación se ocupó indoxil acetato (Sigma-Aldrich) como sustrato. El indoxil acetato es esterificado a indoxil el cual es rápidamente oxidado formando azul índigo, precipitando y manteniéndose como un pigmento brillante estable. Se disolvieron 4.5 g de gelatina en 25 mL de tampón (Tris-HCl 0.1M pH 8.0, 1M de NaCl y 44.6 mM de CaCl$_2$) posteriormente se agregaron 15 mg de indoxil acetato.
6.7.2.1 Preparaciones
En los portaobjetos se colocó un película de 1 mm de grosor de la preparación de gelatina, posteriormente se dejó reposar 1 h en frío. Luego fueron colocadas las esporas y se mantuvo en incubación 1 h en cámara húmeda. Las observaciones se realizaron en un microscopio (Leica Microsystems GmbH, Wetzlar, Germany) con objetivo de inmersión de 100x.

6.7.2.2 Actividad enzimática
Las esterasas se determinaron en los extractos proteicos usando como substrato el p-nitrofenilbutirato la absorbancia fue medida a 405 nm en microplacas. La mezcla de reacción está constituida por: 120 µL de tampón fosfato de potasio pH 6 0.1 M, 32-40 µL de agua, 2-10 µL de extracto de proteína, 40 µL de p-nitrofenilbutirato 37.5 mM en el mismo tampón.
La mezcla se incubó, 30 min. A temperatura ambiente. Una unidad enzimática es definida como la cantidad de enzima necesaria para liberar 1 mg de p-nitrofenol por hora y por mg. de proteína a temperatura ambiente en las condiciones de ensayo. El coeficiente de extinción molar usado para la cuantificación de p-nitrofenil liberado fue 18000 M$^{-1}$ cm$^{-1}$ (Azinheira, 2005).

6.7.2.2.1 Detección de Isoenzimas
La actividad de las esterasas fue detectada luego de la separación electroforética en gel poliacrilamida semi-desnaturalizante. Terminadas las separaciones los geles fueron incubados durante 10 min. En tampón fosfato de sodio pH 6, para equilibrio de pH. Al final de éste tiempo los geles fueron incubados protegidos de la luz, en una mezcla Fast-Red 0.1% en tampón de fosfatos de sodio a 0.1M pH6. Las isoenzimas con actividad esterásica se presentaron como bandas rojo-anaranjados (Azinheira, 2005).
6.8 Perfil metabolómico de plantas

Para la obtención del Perfil Metabolómico se propusieron tres métodos analíticos: Cromatografía de Gases acoplada a Espectrometría de Masas (CG-MS), Espectrometría de Masas de Inyección Directa por Electrospray (DIESI-MS) y Espectrometría de Masas en doble Tamden (MS²). El uso de estas técnicas permitió el acceso a datos de huellas de espectros de masa que permitieron identificar los metabolitos de acuerdo a su patrón de fragmentación. La descripción detallada de cada técnica usada se presenta a continuación.

6.8.1 Cromatografía de gases acoplada a masas (CG-MS)

Como estrategia de análisis, los MEBg fueron particionados en dos fracciones (hexánica y metanólica). Luego de la obtención de los MEBg, estos fueron resuspendidos en hexano (Sigma-Aldrich), la capa orgánica fue separada y concentrada hasta sequedad bajo presión de vacío a 55°C. El residuo insoluble fue la fracción metanólica. Los componentes volátiles de las fracciones hexánicas y metanólicas fueron filtradas 2 veces en membranas (FILTER-LAB) de φ= 0.25 mm. Posteriormente 2 μL de muestra, de cada fracción, fueron inyectadas en un cromatógrafo de gases acoplado a un espectrómetro de masas (Perkin Elmer Modelo: Clarus 500), la identificación de los componentes volátiles se llevó a cabo con base a los índices de retención y los espectros de masa, el procedimiento se realizó en una columna DB- WAXetr de 60 m de longitud, φ interno de 0.25 mm y 0.25 μm de espesor. La temperatura del inyector fue de 70°C y la del detector de 250 ºC y se utilizaron helio como gas acarreador con un flujo volumétrico de 1 mL.

6.8.2 Espectrometría de masas MS y MS²

Para el desarrollo de ésta técnica, la muestra de MEBg fue preparada siguiendo como estrategia de análisis el particionamiento en tres fracciones. Una vez obtenido los MEBg, se resuspendieron en hexano (Sigma-Aldrich) la capa orgánica fue separada y concentrada.
hasta sequedad, bajo condiciones de vacío a 55°C (ésta fue la fracción hexánica). El residuo insoluble fue suspendido en etil-acetato (Sigma-Aldrich), luego fue separado y concentrado hasta sequedad en condiciones de vacío a 55°C (fracción en etil-acetato), finalmente la última capa insoluble fue la fracción metanólica. Las fracciones obtenidas, fueron filtradas 2 veces en membranas (FILTER-LAB) de φ= 0.25 mm., respectivamente. La composición química de las tres fracciones fue analizada con el apoyo del Laboratorio de Bioquímica Instrumental del CINVESTAV Unidad Irapuato, donde se realizó el estudio por espectrometría de masas, empleando un analizador de masas cuadrupolo. Micromass ZQ 2000 de Waters ®. Todas las mediciones fueron realizadas usando una ionización por electrospray (ESI) tanto en modo positivo como negativo. Los voltajes para la fuente de ionización se establecieron en 3 KV, para el capilar, 60V para el cono y 3V para el extractor, el lente RF (orientación range-finding) se empleó 0.5 V. Las temperaturas ocupadas fueron 80°C para la fuente y de 150°C para la desolvatación. El gas empleado fue nitrógeno con flujo de 250 L/h para la desolvatación y 50 L/h para cono. El multiplicador fue ajustado a un valor de 650 V. Los espectros fueron obtenidos de manera continua en un rango de 50-2000 m/z, cada corrida tuvo una duración de 1 min., con un tiempo de escaneo de 10 s y un inter-scan de 0.1 s. Las muestras fueron inyectadas a una velocidad de 10 μL/min. La fragmentación de las moléculas con mayor concentración, en cada fracción obtenida, fue realizada con el espectrómetro de masas con trampa de iones Thermo Scientific LCQ FleetTM Ion Trap, con energías de ionización desde 20 a 40 eV, en modo positivo y negativo. Posteriormente con los datos adquiridos fue realizado el análisis bioinformático de los espectros de masa y con los patrones de fragmentación obtenidos se llevó a cabo la identificación putativa a través del uso de base de datos.
6.9 Perfil de Expresión Génica de *H. vastatrix*

6.9.1 Preparación de muestras de RNA total y síntesis de ADNc para RT-PCR

Los estudios de expresión de genes fueron realizados en el Centro de Investigação das Ferrugens do Café/Instituto Superior de Agronomía/Universidad de Lisboa (CIFC). Una vez evaluado los porcentajes de germinación y apresorio, fue elegida la concentración a la cual se redujo a 50% la germinación. Hojas colectadas fueron almacenadas a 80°C. Entonces el RNA total fue extraído de muestras congeladas usando el Spectrum® Plant Total RNA kit (Sigma Aldrich), con adición de una solución de enzima de digestión DNAsa I, siguiendo la recomendación del proveedor (Sigma-Aldrich). Después de la digestión con enzima DNAsa I, únicamente las muestras de RNA con relación 260/280 de 1.9 a 2.1 y relación 260/230 de 2.0 fueron usadas para la síntesis de ADNc. La calidad de las muestras de RNA fue además confirmada por electroforesis en gel de agarosa al 3%, UltraPure™ (Invitrogen), la cuantificación de RNA fue determinada con un espectrofotómetro Lambda EZ201 (Perkin Elmer, Whaltman, USA). El ADNc de la primera hebra fue sintetizado de 1000 ng total de RNA, en un pool con volumen final de 20 μL ocupando el Kit Revert Aid Reverse Transcriptase (Thermo Scientific) y primer oligo (dT) (MBI Fermentas, Vilnius, Lituania) siguiendo las instrucciones del proveedor. Posteriormente cada muestra fue diluída 25 veces y almacenado a 20°C.

6.9.2 Cuantificación del gen mediante RT-qPCR

Los primers usados son mostrados en el cuadro 2 (Vieira et al., 2012; Vieira et al. 2011). La qRT-PCR fue realizada basándose en la inserción intercalante en la hebra de DNA de Eva Green ® Supermix (Bio-Rad), en un equipo iQ5- real-time termal (Bio-Rad, Hercules, USA). Cada reacción fue hecha usando 5 μL de cDNA y 20 μL de mezcla de reacción la cual contenía 7.5 μL de EvaGreen Supermix, 0.45 μL de cada primer (10μM) y 1.6 μL de agua destilada estéril. Las condiciones de temperatura ocupadas consistieron en 10 min. De activación de la enzima a 95°C, seguido por 45 ciclos de PCR a 95°C por 15 s
Actividad antiroya de MEBr: aspectos metabolómicos y génicos

(desnaturalización), y 60°C por 30 s. Los valores de fluorescencia fueron exportados y usados para determinar Cq y valores de eficiencia con el software LinRegPCR. La línea base y el ciclo de cuantificación (Cq) se determinaron automáticamente también utilizando el software mencionado. Se realizó un análisis de la curva de fusión al final de la ejecución de la PCR en el rango de 60–95 °C, aumentando la temperatura de manera gradual en 0.5 °C cada 10 s. Cada reacción de PCR se realizó por duplicado y la especificidad de los amplícones se validó mediante análisis de la curva de fusión y mediante electroforesis en gel de agarosa al 3%. La cuantificación relativa de los genes de interés se calculó de acuerdo a la fórmula propuesta por Pfaffl (2001):

\[
Nivel \ de \ expresión = \frac{E_{goi}^{ΔCq(\text{control–target})}}{E_{NF}^{ΔCqNF(\text{control–target})}}
\]

Dónde:

goi= gen de interés,

\(E\)= es la eficiencia promedio del par de cebadores analizados,

\(NF\)= es el factor de normalización.

\(Target\)= representa la etapa de desarrollo en el análisis,

Para garantizar el uso de los mejores genes de referencia para cada conjunto de datos, fueron ocupados NF de GADPH y Hv00099 (Vieira et al. 2011).

La media y la desviación estándar de las réplicas biológicas se calcularon utilizando métodos matemáticos previamente descritos (Willems et al. 2008). Donde primero se realizó una transformación log de los valores de niveles de expresión de genes, lo cual hace la distribución de los datos simétricos y además atribuye igual peso en las condiciones con sobreexpresión o baja expresión, posteriormente se calcularon las desviaciones de las expresiones y el promedio de las mismas. Este paso no afecta el nivel de expresión y provee la corrección del grupo de datos de las réplicas. Luego se realizó la sustracción del promedio de los niveles de expresión de genes, obtenidos originalmente, menos el promedio de los niveles de expresión que se transformaron en log, éste paso reduce la variación entre cada réplica causada por el uso de diferentes controles. Como paso final se llevó a cabo el autoscaling, el cual se conoce como corrección final donde se multiplica la
Actividad antiroya de MEBg: aspectos metabolómicos y génicos

desviación estándar obtenida de los datos transformados a log por los promedios de nivel de expresión (que previamente se obtuvieron por sustracción). Estos pasos sirvieron para estandarizar los datos del nivel de expresión de genes entre réplicas biológicas del mismo tratamiento, aunque fue clara la tendencia similar entre ellas.

Cuadro 2. Características de primers y amplicones para *H. vastatrix* estudiados por RT-qPCR

<table>
<thead>
<tr>
<th>Gene</th>
<th>Primer sequence</th>
<th>Amplicon size (bp)</th>
<th>PCR efficiency</th>
<th>Boundary</th>
<th>Tm (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GADPH- oxidoreductasa en glucólisis y gluconeogénesis (gene de referencia)</td>
<td>F-ACCTGGACAGCTACGAC
R-CCATACCAGTGAGCTTCC</td>
<td>280</td>
<td>1.92</td>
<td>Exon/intrón</td>
<td>87</td>
</tr>
<tr>
<td>Hv00099- proteína secretada (gen de referencia)</td>
<td>F-CCAAGTCGAATAATAGGC
R-CCAACGCCTATTACATCCG</td>
<td>195</td>
<td>2.03</td>
<td>Exon/Exon</td>
<td>81</td>
</tr>
<tr>
<td>MAPK (Proteína cinasa activada por mitógenos)-relacionada a estímulo extracelular, regulando varias vías de señalización)</td>
<td>F-AGTCATGGACTATTGTC
R-TAGGAGCTTGATGATATCG</td>
<td>84</td>
<td>1.83</td>
<td>Exon/Exon</td>
<td>60</td>
</tr>
<tr>
<td>Gpa (Proteína heterotrimérica G subunidad α, relacionada con cascada de señalización es una proteína transmembranal)</td>
<td>F-GCTCTGAACGTTGTCCAC
R-AAATCGTATGGTCAGCC</td>
<td>146</td>
<td>1.98</td>
<td>Exon/Exon</td>
<td>60</td>
</tr>
<tr>
<td>Hv1202 (quitina desacetilasa)</td>
<td>F- TTATGATGACGGCCAGGTAGC
R- TCCAGGTATGCGAGGAAAG</td>
<td>173</td>
<td>1.99</td>
<td>Exon</td>
<td>60</td>
</tr>
<tr>
<td>Hv1571 (quitina desacetilasa)</td>
<td>F- AQTGAGGCATCCGTCAGCAAGTA
R- TTGGGCTTCCGTTCCTTCGT</td>
<td>125</td>
<td>1.91</td>
<td>Exon</td>
<td>60</td>
</tr>
<tr>
<td>Hv1565 (quitina desacetilasa)</td>
<td>F- TTAGGGTGTTAAATCGTGGGCT
R- AAGATTGCTGCTGGTCT</td>
<td>120</td>
<td>1.90</td>
<td>Exon</td>
<td>60</td>
</tr>
<tr>
<td>Hv524 (quitina desacetilasa)</td>
<td>F- AQTATCCAGTTGCCCACCGT
R- TTGCGGGCTCGGTCGGA</td>
<td>149</td>
<td>1.90</td>
<td>Exon</td>
<td>62</td>
</tr>
<tr>
<td>Hv242 (quitina desacetilasa)</td>
<td>F- ATTGCCGCGCCAGGCA</td>
<td>175</td>
<td>1.86</td>
<td>Exon</td>
<td>62</td>
</tr>
</tbody>
</table>
Actividad antiroya de MEBg: aspectos metabolómicos y génicos

TAC
R
ACATCAGTCCAGGCCGTCGAA
GGG
Hv752 (quitina desacetilasa)

| | F - GATCAGCTCAGTGCCGATCAAA TGC | R - CCGAGCTTTGGCTCCACATCAA TAG | 181 | 1.66 | Exon | 61 |

6.10 Diseño Experimental

6.10.1 Ensayo en hoja separada: test preliminar evaluación del efecto de concentraciones altas de extracto

Los experimentos se realizaron siguiendo un diseño factorial multinivel con seis tratamientos y 3 repeticiones.

Cuadro 3. Diseño de experimento: evaluación de altas concentraciones de MEBg

<table>
<thead>
<tr>
<th>Factor</th>
<th>Niveles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tratamiento</td>
<td>A) Testigo: s/inóculo y s/tratamiento; B) Control positivo c/inóculo y s/tratamiento; C) Control negativo: oxicloruro de cobre y c/inóculo; D) 100 mg·mL⁻¹; E) 270 mg·mL⁻¹; F) 750 mg·mL⁻¹.</td>
</tr>
<tr>
<td>Horas de lectura</td>
<td>4, 8, 14, 20.5, 32.5, 45.5, 69.5, 141.5 y 165.5</td>
</tr>
</tbody>
</table>

Factorial multinivel 9X6
n=3
144 unidades experimentales

Dentro del diseño fueron incluídos dos testigos, un testigo sin aplicación de fungicida (testigo absoluto) y un testigo con la aplicación del fungicida comercial empleado por los productores (testigo convencional). Cada unidad experimental estuvo constituida por unidades de lectura, hojas de café Var. Bourbón, en las que se evaluó el porcentaje de germinación.

El análisis estadístico se llevó a cabo utilizando el software Statgraphic Centurion versión XV mediante un análisis de varianza (ANOVA) con un nivel de significancia α= 0.05 y se
utilizó la prueba de Tukey ($p<0.05$) para determinar las diferencias entre las medias de los tratamientos.

6.10.2 Ensayo de hoja separada: efecto de concentraciones bajas de extracto

Los experimentos se realizaron siguiendo un diseño factorial con siete tratamientos y 3 repeticiones, haciendo un total de 42 unidades experimentales.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Niveles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tratamiento</td>
<td>0, 1, 5, 10, 25, 50, 100, 200 mg·mL$^{-1}$</td>
</tr>
<tr>
<td>Horas de lectura</td>
<td>24, 48 y 72 h</td>
</tr>
</tbody>
</table>

Cada unidad experimental estuvo constituida por una hoja de *C. arabica* var. Caturra. Fue un testigo sin aplicación de fungicida (testigo absoluto).

El análisis estadístico se llevó a cabo utilizando el software Statgraphic Centurion versión XV mediante un análisis de varianza (ANOVA) con un nivel de significancia $\alpha= 0.05$ y se utilizó la prueba de Tukey ($p<0.05$) para determinar las diferencias entre las medias tratamientos.

6.10.3 Análisis bioinformático
6.10.3.1 Perfil metabolómico

Para el análisis bioinformático se llevó a cabo la revisión de los espectros de masa adquiridos en modo negativo y positivo por DIESI-MS de las tres fracciones en las cuales fueron particionados los MEBg. Cada espectro de masa fue depurado mediante la alineación y corrección de la línea base, seguido de esto los datos que relacionan M/Z e intensidad relativa fueron extraídos mediante el uso del software Mmass y luego se generó de manera manual las matrices de estudio, tanto en negativo como en positivo.
Actividad antiroya de MEBg: aspectos metabolómicos y génicos

Posteriormente, se empleó la plataforma Metaboanalyst Versión 4.0, con funciones escritas en software R versión 3.4.3 para el análisis estadístico multivariante (Xia y Wishart, 2016). Derivado del análisis por espectrometría de masas en doble tamden se generaron los patrones de fragmentación de las masas moleculares que fueron observadas con mayor grado de abundancia relativa, de los espectros de masa obtenidos previamente por DIESI-MS. La identificación de las masas moleculares exactas de metabolitos, se obtuvieron mediante la consulta, revisión y comparación de los patrones de fragmentación obtenidos relacionandolos con la base de datos de librerías y plataformas en línea (METLIN, ChemSpider, PubMed, HMDB, LIPID MAPS, MassBank, MetFrag), así como con la literatura, considerando también la masa monoisotópica, espectro de masa, masa molecular más probable y mecanismo de ruptura en cada patrón de fragmentación.
CAPÍTULO VII. RESULTADOS Y DISCUSIÓN

7.1 Identificación del material vegetal
En relación a la colecta del material vegetal, la identificación de las plantas se realizó con el apoyo de la Secretaría del Medio Ambiente e Historia Natural (SeMAHN) de Chiapas, México. Las muestras fueron depositadas y forman parte de la colección científica del herbario bajo el número de registro 49985 y con el nombre científico Baccharis glutinosa Pers.

7.2 Colecta de roya
Las uredosporas de H. vastatrix, correspondía a las características de un polvo amarillo o naranja, reniforme, de textura lisa en el interior y rugoso en la parte externa, éstas características pertenecen a las indicadas por McCain et al., (1984).

Figura 7. Microfotografía de uredosporas of H. vastatrix, microscopio de contraste de fases: Objetivo 100X.

7.3 Actividad antifúngica in vitro: estudio de altas concentraciones de MEBg
Con la finalidad de conocer en una primera instancia la existencia de un efecto notorio sobre la inhibición en germinación de uredosporas de H. vastatrix sobre hojas de Coffee
arabica Var. Bourbón, los extractos metanólicos de raíces de chilca fueron ensayados en un variado rango de altas concentraciones, los cuales fueron desde 100 hasta 750 mg·mL⁻¹. En este estudio se demostró que existen diferencias estadísticas significativas entre los tratamientos de extractos metanólicos de raíces de Baccharis glutinosa Pers. (MEBg), (Figura 8; Figura 9).

Figura 8. Efecto de los extractos metanólicos de raíces de B. glutinosa sobre el % de germinación de uredosporas de Hemileia vastatrix. Prueba de Tukey (p<0.05). Las letras mayúsculas indican hojas fijadas: A) Testigo: s/inóculo y s/tratamiento; B) Control positivo c/inóculo y s/tratamiento; C) Control negativo: oxicloruro de cobre y c/inóculo; D) 100 mg·mL⁻¹ E) 270 mg·mL⁻¹; F) 750 mg·mL⁻¹. p < 0.05.
Figura 9. Efecto de los extractos metanólicos de raíces de *B. glutinosa* sobre el % de germinación de uredosporas de *Hemileia vastatrix* con respecto a las h transcurridas. Las letras mayúsculas indican hojas fijadas: A) Testigo: s/inóculo y s/tratamiento; B) Control positivo c/inóculo y s/tratamiento; C) Control negativo: oxicloruro de cobre y c/inóculo; D) 100 mg·mL⁻¹; E) 270 mg·mL⁻¹; F) 750 mg·mL⁻¹. *p < 0.05.*

El ensayo realizado *in vitro* para la actividad antifúngica (de la hora 4 a la 165.5), permitió observar el proceso infectivo de las uredosporas de *H. vastatrix* (Berkeley & Broome) sobre las hojas de café var. Bourbón (Figura 9). El análisis estadístico realizado permitió confirmar que el tratamiento B) a partir de la hora 32.5 presentó el 15% de germinación. Loureiro et al. (2015) encontraron 43% de germinación 24 h Después de la inoculación en hojas de *Coffee arabica* H147/1, previamente descrito (Talinhas et al., 2016; Diniz et al., 2012), y 34% en condiciones *in planta*. De manera natural para que la infección sea completada, y se generen esporas germinadas se requiere de agua libre y preferentemente
Actividad antiroya de MEBg: aspectos metabolómicos y génicos

hojas jóvenes que viejas, en un rango de temperatura de 22-28°C, de la misma forma otro factor importante es la humedad del ambiente. Se estima que una sola lesión sobre la hoja genera de 4-6 esporas y en el periodo de 3-5 meses puede llegar a liberar 300-400,000 uredosporas (Talinhias et al., 2016). Es importante destacar que independientemente del tiempo de muestreo, a partir de la hora 32.5, las hojas tratadas con MEBg disminuyeron significativamente el porcentaje de germinación hasta <5% a medida que aumentaba la dosis del tratamiento de extracto empleado ($p <0.05$).

De esta forma la aplicación de los MEBg a concentraciones de 270 y 750 mg·mL$^{-1}$ permitieron obtener los mayores % de inhibición en la germinación de esporas comparado con el tratamiento de oxicloruro de cobre, usado como control negativo (Figura 9).

El oxicloruro de cobre es un químico comúnmente usado como tratamiento en cultivos de Coffee arabica, principalmente en el continente americano, para prevenir la proliferación de la roya del café, sin embargo en los últimos años se ha demostrado que su uso excesivo puede dañar la estabilidad de suelos de cultivos agrícolas (Muhammad et al., 2015).

![Imagen de uredosporas de H. vastatrix](image)

Figura 10. Uredosporas de H. vastatrix bajo microscopio de contraste: Azul de tripán 40X, Cámara Canon G10 100X zoom 5X PH.

La germinación de uredosporas y la posterior penetración del hongo son claves para el desarrollo biótrofo inicial de patógenos de plantas, como la roya. Los hongos que infectan con uredosporas son particularmente sensibles durante las etapas iniciales del ciclo de la
enfermedad, especialmente en la germinación y penetración. El crecimiento de *H. vastatrix*, comienza con el reconocimiento de la superficie hospedera, por parte de las uredosporas ya que es en ésta superficie donde se lleva a cabo la germinación y en los estomas la diferenciación de apresorio, como pudo confirmarse con los experimentos ensayados. Por lo tanto la hidrofobicidad de la superficie es un importante estímulo para la inducción de estructuras de infección en la planta (Kou and Naqvi, 2016), una explicación que apoya éste fenómeno observado es el reporte de Thines et al., (2004) ya que demostraron que en éste estadio las uredosporas de los hongos pueden liberar una gota adhesiva desde un compartimento periplásmico la cual adherirá a la superficie hidrofóbica. En el trabajo Thines et al. (2004), concluyen que esta especie de pegamento es atribuido a la presencia de glicoproteínas. Por otro lado en las interacciones compatibles entre planta y uredospora, la hifa de penetración se diferencia de un apresorio y continúa el proceso de infección dentro de la cámara subestomática. En la punta de la hifa de penetración, son formadas dos ramas laterales gruesas y se diferencian dentro de una célula de madre haustorial (conocida como HMC por su acrónimo en inglés) el cual da lugar a haustorio en las células subsidiarias de los estomas antes de la formación de haustorio en las células mesófilas, misma que es una característica única de *H. vastatrix*. Los resultados obtenidos sugieren que la presencia de metabolitos antifúngicos de MEBg pudo romper ésta primera comunicación entre planta y uredospora.

7.4 Actividad antifúngica in vitro: estudio de bajas concentraciones de MEBg

Los MEBg inhibieron la germinación de uredosporas de *H. vastatrix* Berkeley & Broome (Figura 11). Aunque la presencia del extracto a 1 mg·mL⁻¹ no inhibe la germinación, ésta sí ocurrió a una concentración de 5 mg·mL⁻¹ reduciendo 40% las uredosporas germinadas, eso significa 20% menos respecto al control negativo (*p*<0.05). Las concentraciones de 10 a 25 mg·mL⁻¹ presentaron un intervalo de inhibición entre 75-96%, mientras que concentraciones de 100 a 200 mg·mL⁻¹ permitieron obtener del 98-100% de inhibición en la germinación. Sin embargo a 50 mg·mL⁻¹ pudo observarse un ligero incremento en el % de inhibición de 10-14 respecto a la concentración de 25 mg·mL⁻¹. Moo-Kooh et al. (2014),
Lira-De León et al. (2014) and Bajwa et al., (2003) reportaron la presencia de una respuesta estimulatoria en la germinación al analizar diversas concentraciones de extractos de plantas sobre el crecimiento fúngico. Cabe señalar que dicho comportamiento fue similar en el estudio a las 24 y 72 h.

![Gráfico 11](image.png)

Figura 11. In vitro: Efecto de MEBg sobre la capacidad de germinación de uredosporas de *H. vastatrix*. Tratamiento ensayado: NC= control negativo, 1, 5, 10, 25, 50, 100 y 200 mg·mL$^{-1}$ de MEBg. Los valores fueron expresados como promedio±SD. $p<0.05$ de acuerdo a prueba de Tukey.

Al evaluar el porcentaje de germinación de uredosporas a través de microscopía, pudo observarse además que la presencia de apresorio disminuyó a la concentración de 5 mg·mL$^{-1}$ (Figura 13).
Actividad antiroya de MEBg: aspectos metabolómicos y génicos

Figura 12. In vitro: Efecto de MEBg sobre la capacidad de germinación de uredosporas y de formación de apresorio de H. vastatrix, 24 h después de inocular. Tratamiento ensayado: NC= control negativo, 1, 5, 10, 25, 50, 100 y 200 mg·mL$^{-1}$ de MEBg. Los valores fueron expresados como promedio±SD. $p<0.05$ de acuerdo a prueba de Tukey.

La diferencia en el porcentaje de inhibición fue estadísticamente significativo ($p<0.05$). El apresorio es un importante órgano de infección, sustancial para el desarrollo de hongos biotróficos en los estadíos tempranos de la patogénesis, donde además se presenta la adhesión (de la espora) y la penetración del hongo (a través de apresorio e hifa de penetración). El apresorio puede ser visible como inflamaciones del tubo de germinación, separado por un septum como es característico de las royas (Mendgen and Hahn, 2002). Luego del reconocimiento de la célula guarda el apresorio se desarrolla sobre el estoma, entonces la hifa de penetración entra dentro de la cámara subestomática y se elonga dentro una hifa de infección. Aunque la morfología del apresorio varía significativamente entre diferentes especies de hongos, es variadamente aceptado que media la penetración.
Figura 13. Germinación de uredosporas y poca diferenciación de apresorio, afectadas por MEBg: A) Control positivo, objetivo 20X; B) chilca 10 mg·mL⁻¹, objetivo 40X
Dentro de los aspectos que detonan la formación de apresorio, Thines et al. (2004), afirman que en una primer instancia la detección de señal física juega un rol importante ya que “el gancho”, previo a la formación de apresorio, se encarga de sondear la topografía de la superficie en el estadio dicariótico de la roya. Otra señal química importante es la detección de la uredospora de monómeros de cutina u otros productos de descomposición liberados desde la superficie de la planta por la actividad de enzimas degradadoras secretadas por el hongo. Existe evidencia de que las señales extracelulares son traducidas a través de cascadas las cuales involucran la interacción de cAMP y proteínas cinasas activadas por mitógenos (MAPK) ver Figura 25, (Deising et al., 2000).

Figura 14. *In vitro*. Efecto de MEBg sobre la capacidad de germinación y formación de apresorio de uredosporas de *H. vastatrix*. Tratamientos ensayados: NC= control negativo, 1 y 5 mg·mL⁻¹ de MEBg. Valores fueron expresados como promedio±SD, *p*<0.05 de acuerdo a prueba de Tukey.
Una vez que la inhibición de la germinación fue confirmada a nivel in vitro, se eligió la concentración de 5 mg∙mL⁻¹ a la cual se redujo el 40-50% de la germinación y la formación de apresorio para evaluar el perfil de expresión de genes además de los porcentajes de germinación y formación de apresorio.

Figura 15. Germinación de uredospora y formación de apresorio. 24h, control positivo. Objetivo 20X.
7.5 Actividad antifúngica in planta

Las uredosporas de *H. vastatrix*, mostraron ser susceptibles a MEBg en el estudio efectuado *in planta* a una concentración de 5 mg·mL$^{-1}$ (Figura 16), con un porcentaje de inhibición en la germinación de 45 y 50 para el porcentaje de formación de apresorio, lo cual es similar a lo obtenido bajo condiciones *in vitro* (Figura 17). Este hallazgo significa que aunque la germinación está ocurriendo, no hay penetración significativa de la infección en las hojas debido únicamente al 50% de la presencia de apresorio.

![Bar chart](image)

Figura 16. *In planta*. Efecto of MEBg sobre la capacidad de germinación y formación de apresorio de *H. vastatrix*. Tratamiento ensayado: NC= control negativo y 5 mg·mL$^{-1}$ de MEBg. Valores fueron expresados como promedio±SD. *p*<0.05 de acuerdo a la prueba de Tukey.
Figura 17. In vitro vs In plant. Efecto de MEBg sobre la capacidad de germinación y formación de apresorio de *H. vastatrix*. Tratamiento ensayado: NC= control negativo y 5 mg·mL$^{-1}$ de MEBg. Valores fueron expresados como promedio±SD. $p<0.05$ de acuerdo a la prueba de Tukey.
Actividad antiroya de MEBg: aspectos metabolómicos y génicos

Inspecciones visuales se efectuaron diariamente (Ver Figura 19) donde pudo compararse el avance de la infección con respecto al transcurso de los días, basados en la clasificación de estadios de infección de la roya de acuerdo al CIFC. Las hojas control al día 11 mostraban manchas o puntuación clorótica, para el día 13 fue clara la presencia de pequeñas tumefacciones en el punto de penetración de roya, al día 15 el avance de la infección se encontraba en etapa 0 con evidencia de clorosis, más o menos intensa, sin formación de soros uredospóricos; en el día 21 la presencia de infección se encontraba en el nivel 2 con pústulas uredospóricas medias o grandes rodeadas de clorosis, para el término del seguimiento experimental en el día 39 las hojas ya presentaban el nivel 4 de infección con grandes pústulas uredospóricas pudiendo presentar clorosis. Las hojas tratadas con chilca no presentaron señal macroscópica que indicara infección.

Figura 18. Proceso de infección: uredospora, tubo de germinación y apresorio, sobre tejido foliar. Corte transversal con micrótomo de congelación. Control, 7mo día. Objetivo 40X.
Figura 19. Efecto de chilca sobre las fases del proceso de infección de la roya en hojas de café.
Figura 20. A) Germinación de uredospora con presencia de apresorio 24h, vista de envés, objetivo 40X; B) Corte transversal con microtomo de congelación: apresorio, 7 d, objetivo 40X.
7.6 Proteínas: esterasas

7.6.1 Detección citológica

La presencia de esterasas fue determinada para conocer si importantes proteínas de las uredosporas estaban inhibiéndose ante el contacto con MEBg (Figura 21). Los resultados observados confirman que hubo una disminución del 40% de incidencia en la actividad de esterasas en el citoplasma, respecto al control negativo en uredosporas, que previamente se habían tratado con 5 mg·mL⁻¹ MEBg.

![Diagrama de barras con datos de la incidencia de esterasas en el citoplasma y la membrana celular]

Figura 21. Detección citológica de esterasas: Efecto de MEBg sobre la actividad esterasas de Uredosporas de *H. vastatrix*. Tratamiento ensayado: NC= control negativo y 5 mg·mL⁻¹ de MEBg. Valores fueron expresados como promedio±SD. *p*<0.05 de acuerdo a prueba de Tukey.

Para entender el fenómeno observado, es necesario recordar que los hongos fitopatógenos emplean diferentes mecanismos para unirse a la superficie de la planta hospedadora. En cualquier caso, la penetración del hongo en la planta precisa del contacto y la adherencia de las esporas y/o de la primera hifa que resulta de su germinación (tubo germinativo) a la superficie vegetal, como se ha mencionado previamente. Los mecanismos por los cuales...
este proceso se consigue han sido medianamente estudiados. Sin embargo, se ha reportado consistentemente que uno de esos mecanismos trascendentales consiste en la excreción por parte del hongo de enzimas tales como esterasas (cutinasas y quitina desacetilasas) que alteran la superficie vegetal facilitando la adherencia (Thines et al., 2004; Deising et al., 2000; Mendgen and Hahn, 2002; Mendgen et al., 1996).

7.6.2 Detección de isoenzimas

El estudio de las isoenzimas de esterasas (por enfoque isoeléctrico) confirmó la relación con los resultados obtenidos de la detección citológica en ambas fracciones proteicas obtenidas, tanto las intra como extracelulares (Figura 22).

![Figura 22. Actividad esterasa por deposición de azul índigo en uredosporas en suspensión tratadas con 5 mg·mL⁻¹ MEBg (A) y no tratado (B). Electroforesis de enfoque isoeléctrico (IEF) y (C) por caracterización de fracción de proteínas extracelulares (EC) e intracelulares (IC) de uredosporas germinadas en agua o en extracto de MEBg (5 mg·mL⁻¹). Una disminución en la actividad esterasa fue observada después de tratar con extracto de B. glutinosa las uredosporas germinadas. El estudio de isoenzimas esterasas (por](image-url)
isoelectroenfoque) confirmó ésta observación en fracciones intra y extracelulares. Aragunde et al. (2018) mencionan que enzimas esterasas son muy diversas en sus características y condiciones óptimas de trabajo, teniendo como puntos isoeléctricos valores en el rango de 2.7-4.8 lo cual confirma los resultados obtenidos en el zimograma de actividad esterasa (ver figura 22), además menciona rangos de pH óptimo de 4.5-12. Las uredosporas tratadas con extractos de chilca mostraron una clara disminución en la actividad de las enzimas esterasas tanto las producidas de manera intra como de manera extracelular, confirmando con ello la cadena de disrupciones metabólicas a causa de los metabolitos de la planta estudiada.

7.7 Perfil de expresión de genes
Los perfiles de expresión son un recurso importante que permite adquirir nueva información acerca de lo que hacen los genes cuando son sometidos a cierta condición. Un paso previo para éste tipo de análisis importante es la obtención del RNA, en una primera instancia. Para éste ensayo se consideraron las muestras de hojas que previamente habían sido atomizadas con MEBg a una concentración de 5 mg·mL⁻¹, ya que fue con ésta concentración que se redujo a 50 el % de germinación de uredosporas. Posterior a la extracción de ARN, para confirmar la integridad de la banda, fue llevada a cabo la evaluación de su calidad a través de los geles de electroforesis (Figura 23) donde pudo observarse la definición de la doble banda que caracteriza la presencia de RNA. Así también con la cuantificación del RNA se confirmó el grado de pureza de las muestras. La relación A260/280 es muy estable y se considera que un ARN de pureza óptima tiene un valor entre 2.0-2.2. En general, el ARN se establece como funcional cuando la relación A260/230 se sitúa >1.5 o cercano a 2.0 (Thermo Fisher Scientific, 2016). Una relación menor de 1.5 indicaría presencia de contaminación en la muestra (cuadros 5 y 6). La información presentada permite señalar que el método de extracción empleado fue efectivo para la obtención de los ácidos nucleicos de estudio.
Actividad antiroya de MEBg: aspectos metabolómicos y génicos

Figura 23. Electroforesis de ARN de uredosporas de roya en gel de agarosa colectadas luego de la inoculación en hojas a las 24h, 48h, 72h y 7 días.
Cuadro 5. Calidad de la extracción de ARN en el control, en función a la cuantificación en Nanodrop

<table>
<thead>
<tr>
<th></th>
<th>Concentración (ng·µL⁻¹)</th>
<th>260/280</th>
<th>260/230</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 h</td>
<td>241.7</td>
<td>2.06</td>
<td>2.17</td>
</tr>
<tr>
<td>24 h</td>
<td>324.2</td>
<td>2.03</td>
<td>2.01</td>
</tr>
<tr>
<td>48 h</td>
<td>349</td>
<td>2.05</td>
<td>2.02</td>
</tr>
<tr>
<td>48 h</td>
<td>281.7</td>
<td>2.06</td>
<td>1.96</td>
</tr>
<tr>
<td>72 h</td>
<td>260.4</td>
<td>2.08</td>
<td>1.79</td>
</tr>
<tr>
<td>72 h</td>
<td>199.5</td>
<td>2.10</td>
<td>2.12</td>
</tr>
<tr>
<td>7 d</td>
<td>383.4</td>
<td>2.05</td>
<td>2.00</td>
</tr>
<tr>
<td>7 d</td>
<td>437.7</td>
<td>2.02</td>
<td>2.00</td>
</tr>
</tbody>
</table>

Cuadro 6. Calidad de la extracción de ARN en el tratamiento a una concentración de 5 mg·mL⁻¹ en función a la cuantificación en nanodrop

<table>
<thead>
<tr>
<th></th>
<th>Concentración (ng·µL⁻¹)</th>
<th>260/280</th>
<th>260/230</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chilca</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 h</td>
<td>328.7</td>
<td>2.04</td>
<td>1.93</td>
</tr>
<tr>
<td>24 h</td>
<td>138.4</td>
<td>2.00</td>
<td>1.76</td>
</tr>
<tr>
<td>48 h</td>
<td>238.7</td>
<td>2.07</td>
<td>2.10</td>
</tr>
<tr>
<td>48 h</td>
<td>333.9</td>
<td>2.04</td>
<td>2.01</td>
</tr>
<tr>
<td>72 h</td>
<td>283.4</td>
<td>2.03</td>
<td>1.84</td>
</tr>
<tr>
<td>72 h</td>
<td>243</td>
<td>2.00</td>
<td>1.79</td>
</tr>
<tr>
<td>7 d</td>
<td>137.9</td>
<td>2.05</td>
<td>2.02</td>
</tr>
<tr>
<td>7 d</td>
<td>127.9</td>
<td>1.87</td>
<td>1.25</td>
</tr>
</tbody>
</table>
Actividad antiroya de MEBg: aspectos metabolómicos y génicos

Posterior a ello se efectuó la síntesis de cDNA y la cuantificación en qRT-PCR.

Figura 24. RT-qPCR Perfil de expresión de genes de *H. vastatrix*: Hv_ProtG y Hv_MPK_00858 para muestras obtenidas a lo largo del tiempo en interacción de hojas previamente tratadas con MEBg (5 mg·mL⁻¹), expresado como Fold Change (Y axis) por comparación de los niveles de expresión en plantas inoculadas no tratadas.

Los MEBg parecen causar una represión a la vista en genes de señalización (Figura 24) como MAPKinasa (Hv_k_00858) y Proteína G (Hv_ProtG), en los primeros días de la infección. Los receptores acoplados a proteínas G (GPCR) representan la familia más grande de receptores transmembrana y son responsables de transducir señales extracelulares por estímulos tan diversos como la luz, protones, contacto físico, Ca²⁺, odorantes, aminoácidos, nucleótidos, proteínas, péptidos, esteroides y ácidos grasos, en respuestas intracelulares que involucran complejas redes de señalización intracelular.
A pesar de exhibir una diversidad sorprendente en funciones biológicas, todos los GPCR poseen la misma arquitectura fundamental que consta de siete dominios transmembrana (TM) y comparten mecanismos comunes de transducción de señales. Las GPCR activadas estimulan el intercambio de GTP por GDP en proteínas Gα, disociando las subunidades Gα y Gβγ que a su vez desencadenan respuestas biológicas al unir proteínas efectoras (activación por cinasas) que regulan la señalización en sentido descendente (Xue et al., 2008; Li et al., 2007).

Figura 25. Vías de transducción de señales, que se sabe están involucradas en avance de infección y morfogénesis de hongos fitopatógenos (Adaptado de Deising et al., 2000).
Las proteínas G interactúan con los componentes posteriores de diferentes vías de señal. Todos involucran proteínas quinasas, que fosforilan factores de transcripción y activación de conjuntos específicos de genes. Una de las señales de transducción dentro de la cascada de señalización utiliza fosfolipasa C (PLC) (Figura 25). Ésta enzima hidroliza fosfatidilinositol-4,5- bifosfato e inositol-1,4,5- trifosfato (IP₃) a diacilglicerol (DAG). El IP₃ mobilitiza Ca²⁺ dependiente de proteína cinasa (Ca²⁺/calmodulina-proteína cinasa) y se ha demostrado que genes de calmodulina (cam) de Colletotrichum gloesporioides y C. trifolii, son inducidos por el contacto de conidios con superficies duras. De la misma forma la activación transcripcional de otros set de genes ocurre, guiando a la germinación y formación de apresorio (Kou y Naqvui, 2016). Existe evidencia de que proteínas cinasas C (PKC) han sido detectadas en el núcleo, por lo que se cree que pueden fosforilar factores de transcripción directamente y así mediar la activación de genes (Deising et al., 2000). Dentro de la cadena de señalización otra de las señales de transducción es la que involucra AC (adenilil ciclasa) que sintetiza cAMP de ATP (Figura 21), y que a su vez se enlaza a cAMP-dependiente de proteína cinasa A (PKA). La interacción con el segundo mensajero conlleva a la disociación del tetrámero inactivo a un dímero de subunidad regulatoria y dos subunidades monoméricas catalíticas, las cuales están relacionadas en la función de virulencia y patogenicidad. Existe además evidencia que permite involucrar cAMP y PKA en la germinación y morfogénesis de apresorio en hongos biótrofos (Hall et al., 1999).

Las proteínas cinasas activadas por mitógenos (MAKP) son cinasas serina/treonina los cuales pueden ser activados por varios estímulos extracelulares y transmitir ésta señal al núcleo mediante la alteración diferencial del estado de fosforilación de los factores de transcripción. Para tratar de comprender el papel trascendental de las cinasas que participan en la cadena de señalización, se centrará la explicación en la evidencia experimental de Juvvadi y Steinbach (2015) quienes afirman que para que se genere el crecimiento de hifas y septación es necesaria la activación de calcineurina la cual es una enzima que posee dos subunidades catalíticas (CnaA y CnaB) las cuales en conjunto con calmodulina activan un complejo proteico. La calmodulina es activada a través de fosforilación por cinasas como
GSK-3β, CK1, CDK1, MAPK, entonces una vez que el complejo de calcineurina está fosforilada puede defosforilar al factor de transcripción CrzA y translocarse dentro del núcleo para activar la biosíntesis de genes relacionados con la biosíntesis de pared celular. Por lo tanto una disminución en la expresión del gen MAPK (cinasa importante de la cascada de señalización), podría estar impactando negativamente sobre el desarrollo de componentes celulares importantes como fue comprobado en el análisis de genes (Turrá et al., 2014).

Figura 26. RT-qPCR Perfil de expresión de genes *H. vastatrix*: quitina desacetilasa para muestras obtenidas a lo largo del tiempo en interacción de hojas previamente tratadas con extracto de chilca (5 mg·mL⁻¹), expresado como Fold Change (Y axis) por comparación de los niveles de expresión en plantas inoculadas no tratadas.
En relación a las quitinas desacetilasas, los perfiles de expresión mostraron un incremento en la expresión de Hv_00742 y Hv_01565 después de 48h (posterior a la inoculación). Alrededor de las 168h un incremento de expresión fue observado para Hv_00524 (Figura 26). Las quitinas desacetilasas (CDAs) son encontradas en los hongos de manera extracelular, en periplasma o en citosol. En periplasma las CDAs están estrechamente acopladas a las quitinas sintasas para actuar rápidamente desacetilando quitinas recién sintetizadas antes de su maduración y cristalización (Figura 27), las CDAs extracelulares son secretados para alterar propiedades fisicoquímicas de la pared celular y también para protegerla de quitinásas exógenas o inicio de autólisis (Aragunde et al., 2018). El análisis de expresión de seis genes relacionados con la síntesis de quitinas desacetilasas demuestran que los extractos de chilca generan un efecto variante en la disminución de su expresión lo cual evidencia el sofisticado sistema de defensa del hongo, sin embargo también denota que en una búsqueda por mantener su equilibrio mantiene la expresión de otros genes que expresan para la síntesis de proteínas quitina desacetilasas (Figura 26).

Figura 27. Mecanismo de acción de quitina-desacetilasa (adaptado de Khattak et al., 2018).
Por lo tanto, la conversión de quitina en quitosano confiere la capacidad a hongos biotróficos, para modificar su composición en la pared celular durante el proceso de infección. Esta estrategia permite la supervivencia de los hongos evitando el reconocimiento de plantas y las lisis de hifas por acción de quitinasas de plantas extracelulares (Deinsing et al., 2000).

7.8 Perfil metabolómico

7.8.1 Análisis por cromatografía de gases

Los estudios en CG-MS de los MEBg, mediante el análisis confirmatorio de los patrones de fragmentación, permitieron obtener el perfil de metabolitos, identificando 19 y 13 sustancias químicas volátiles en la fracción metanólica y hexánica, respectivamente. La evaluación por cromatografía de gases-masas se realizó separando el extracto crudo en las fracciones hexánicas y metanólicas, como estrategia de estudio. El estudio reveló que los componentes presentes en mayor proporción en la fracción hexánica son estructuras policétidas (Cuadro 7):

- (E)-13-etoxitridec-12-en-1-il acetato,
- (1E,6E,12E,14E)-1-(hidroximetoxi) hexadeca-1,6,12,14-tetraen-4-ol,
- Tetradecil-butirato,
- 1-(2-oxopropoxi)tetradecan-2-ona,
- Dodecil-butirato y
- Carbonato (E)-12-(furan-3-il)-4-oxododec-7-en-1-il hidrogeno (Cuadro 2).

Más de 1100 componentes de poliacetilénos han sido identificados en la familia de las Asteraceaes (Konovaloc, 2014), de los cuales se han demostrado diversos tipos de actividad tales como citotóxica, antimicrobial, anti-inflamatoria, entre otras. La diversidad de compuestos de ésta clase es larga, incluyendo estructuras alifáticas y cíclicas, las cuales pueden contener oxígeno, nitrógeno y sulfuros. En el género Baccharis (B. latifolia, B. btusifolia, B. subulata, B. pentlandii), se han realizado estudios de la fracción hexánica encontrándose principalmente la actividad anti-inflamatoria de los extractos obtenidos (Ramos et al., 2016; Abad et al., 2006).
Cuadro 7. Abundancia relativa de los metabolitos presentes en los extractos hexánicos de Chilca analizados por CG-MS.

<table>
<thead>
<tr>
<th>Número</th>
<th>Tiempo de retención</th>
<th>Compuesto</th>
<th>Porcentaje</th>
<th>PM</th>
<th>FM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.09</td>
<td>2-hexanona</td>
<td>0.70%</td>
<td>100.09</td>
<td>C₆H₁₂O</td>
</tr>
<tr>
<td>2</td>
<td>68.589</td>
<td>Dodecil-butirato</td>
<td>4.32%</td>
<td>256.24</td>
<td>C₁₆H₃₂O₂</td>
</tr>
<tr>
<td>3</td>
<td>70.34</td>
<td>Tetradecil-butirato</td>
<td>6.89%</td>
<td>284.27</td>
<td>C₁₈H₃₆O₂</td>
</tr>
<tr>
<td>4</td>
<td>72.087</td>
<td>Ácido (E) - 2 - hidroxi - 7 - metilhexadeca - 8,15-dienoico</td>
<td>0.70%</td>
<td>282.22</td>
<td>C₁₇H₃₀O₃</td>
</tr>
<tr>
<td>5</td>
<td>80.508</td>
<td>Acetato de heptadecilo</td>
<td>0.74%</td>
<td>298.29</td>
<td>C₁₀H₃₈O₂</td>
</tr>
<tr>
<td>7</td>
<td>82.099</td>
<td>(E)-1-(aminometoxi)-12-(furano-3-il)dodec-7-en-4-ona</td>
<td>2.78%</td>
<td>293.2</td>
<td>C₁₇H₂₇NO₃</td>
</tr>
<tr>
<td>8</td>
<td>83.539</td>
<td>(E)-12-(furano-3-il)-4-oxododec-7-en-1-il hidrogeno carbonato</td>
<td>3.64%</td>
<td>308.16</td>
<td>C₁₇H₂₄O₅</td>
</tr>
<tr>
<td>9</td>
<td>94.155</td>
<td>Ácido (E)-6-((1-hidroxi-5-oxohex-2-en-1-il)oxi)-5,6-dioxohexanoico</td>
<td>1.89%</td>
<td>272.09</td>
<td>C₁₂H₁₆O₇</td>
</tr>
<tr>
<td>10</td>
<td>97.311</td>
<td>(E)-13-etoxitridec-12-en-1-il acetato</td>
<td>38.17%</td>
<td>284.24</td>
<td>C₁₇H₃₂O₃</td>
</tr>
<tr>
<td>11</td>
<td>99.19</td>
<td>(4E,10E)-allil dodeca-4,10-dienoato</td>
<td>2.18%</td>
<td>236.18</td>
<td>C₁₅H₂₄O₂</td>
</tr>
<tr>
<td>12</td>
<td>104.79</td>
<td>(2E,6E,8E,10E)-5-oxohexil 11-acetoxi-4-oxoundeca-2,6,8,10-tetraenoato</td>
<td>0.91%</td>
<td>348.16</td>
<td>C₁₉H₃₂O₆</td>
</tr>
<tr>
<td>13</td>
<td>107.47</td>
<td>1-(2-oxopropoxi)tetradecan-2-ona</td>
<td>5.16%</td>
<td>284.24</td>
<td>C₁₇H₃₂O₃</td>
</tr>
</tbody>
</table>
Actividad antiroya de MEBg: aspectos metabolómicos y génicos

| 14 | 113.236 | (1E,6E,12E,14E)-1-(hidroximetoxi)hexadeca-1,6,12,14-tetraen-4-ol | 27.095 | 280.2 | C_{17}H_{23}O_{3} |

El análisis de la fracción metanólica de los extractos (cuadro 8), permitió identificar principalmente la presencia de sustancias tales como: 5-(hidroximetil)furano-2-carbaldehído, (Z)-4-hidroxi-5-((6-hidroxihexil)oxi)pent-4-en-2-in-1-il acetato, furano-2-carbaldehído, 3,5-dihidroxi-2-(2-hidroxietil)-6-(hidroximetil)-2H-piran-4(3H)-ona. Konovalov (2014), reportó que dentro de los poliacetilenos encontrados en especies vegetales de la familia de las asteraceas existe una clasificación en subgrupos individuales, como los tiófenos, ditiaciclohexadienos (thiarubrines), tióésteres, sulfóxidos, sulfonas, alquamidas, clorohidrinas, ésteres de enol espiroacetales, furanos, pironos, tetrahidropiranos, isocoumaroles y acetilenos aromáticos, lo cual coincide con las estructuras de furano y pirano que se encontraron en ésta fracción de manera sustancial. Wei-Ming et al. (2013), llegaron a la conclusión de que el grupo funcional sobre el anillo de furano tiene un papel crucial en el rol de inhibición de la enzima tirosinasa, importante para el desarrollo de hongos. Además confirmaron las constantes de inhibición en el orden siguiente furfural > ácido furoico > furfural alcohol. Con ese estudio se comprobó que compuestos de furano inhibieron la proliferación de Salmonella bacteria y Bacillus subtilis a diferentes concentraciones. Por otro lado estudios previos con furfural en el proceso de fermentación de Saccharomyces carlsbergensis mostró en las células un aumento en especies reactivas al oxígeno (ROS), despolarización de la membrana, aumento en la permeabilización de membrana, y reducción en la síntesis de lípidos (Lopes Da Silva et al., 2016 a; Lopes Da Silva et al., 2016 b). El 5-Hidroximetilfurfural (5-HMF) ha sido encontrado también en extractos alcohólicos de Alpinia oxyphylla y estudios recientes han demostrado que podría servir como un agente con potencial terapéutico en el tratamiento del Alzheimer (Aijing et al., 2014). Un estudio cromatográfico de los extractos acuosos de Gentiana lutea partitionado en n-hexano, etil-acetato y n-butanol permitieron la
Actividad antiroya de MEBg: aspectos metabolómicos y génicos

identificación de sustancias químicas derivadas del furano, 5-hidroximetil-2-furfural y ácido furano-2-carboxfílico (Amakura et al., 2016).

Cuadro 8. Abundancia relativa de los metabolitos presentes en los extractos metanólicos de chilca, analizados por CG-MS.

<table>
<thead>
<tr>
<th>Número</th>
<th>Tiempo de retención</th>
<th>Compuesto</th>
<th>Porcentaje</th>
<th>PM</th>
<th>FÓRMULA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21.78</td>
<td>1-etoxipropan-2-ona</td>
<td>0.18%</td>
<td>102.07</td>
<td>C₅H₁₀O₂</td>
</tr>
<tr>
<td>2</td>
<td>30.387</td>
<td>propan-1-ol</td>
<td>6.74%</td>
<td>60.06</td>
<td>C₃H₈O</td>
</tr>
<tr>
<td>3</td>
<td>31.133</td>
<td>furano-2-carbaldehído</td>
<td>4.10%</td>
<td>96.02</td>
<td>C₅H₄O₂</td>
</tr>
<tr>
<td>4</td>
<td>36.76</td>
<td>5-metilfurano-2-carbaldehído</td>
<td>2.10%</td>
<td>110.04</td>
<td>C₆H₆O₂</td>
</tr>
<tr>
<td>5</td>
<td>40.59</td>
<td>Furano-2-ilmetanol</td>
<td>0.90%</td>
<td>98.04</td>
<td>C₃H₆O₂</td>
</tr>
<tr>
<td>6</td>
<td>41.056</td>
<td>Ácido butírico</td>
<td>2.22%</td>
<td>88.08</td>
<td>C₄H₈O₂</td>
</tr>
<tr>
<td>7</td>
<td>48.073</td>
<td>2-hexilfurano</td>
<td>0.37%</td>
<td>152.12</td>
<td>C₁₀H₁₆O</td>
</tr>
<tr>
<td>8</td>
<td>50.15</td>
<td>Ácido (E)-3-((E)-prop-1-en-1-iloxi)acrilico</td>
<td>1.22%</td>
<td>128.05</td>
<td>C₇H₈O₃</td>
</tr>
<tr>
<td>9</td>
<td>70.408</td>
<td>Tetradecil butirato</td>
<td>2.05%</td>
<td>284.27</td>
<td>C₁₈H₃₆O₂</td>
</tr>
<tr>
<td>10</td>
<td>71.202</td>
<td>3,5-dihidroxii-2-(2-hidroxietil)-6-(hidroximetil)-2H-piran-4(3H)-ona</td>
<td>3.26%</td>
<td>204.06</td>
<td>C₉H₁₂O₆</td>
</tr>
<tr>
<td>11</td>
<td>82.861</td>
<td>5-(hidroxielmetil)furan-2-carbaldehído</td>
<td>38.59%</td>
<td>126.03</td>
<td>C₅H₆O₃</td>
</tr>
<tr>
<td>12</td>
<td>83.652</td>
<td>(3E,6E,8Z)-1-etoxi-11-(furano-2-il)undeca-3,6,8-trieno-1,2,9-triol</td>
<td>0.90%</td>
<td>308.16</td>
<td>C₁₇H₂₄O₅</td>
</tr>
<tr>
<td>13</td>
<td>85.278</td>
<td>(E)-2-(hexadeca-7-en-12,14-diin-1-il)furan</td>
<td>0.85%</td>
<td>282.2</td>
<td>C₂₀H₂₆O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Compuesto</td>
<td>%</td>
<td>Masa Molecular</td>
<td>Fórmula Molecular</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>--</td>
<td>-----</td>
<td>---------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>14</td>
<td>94.29</td>
<td>3-hidroxi-N-((3E,5E)-2-hidroxi-6-(((E)-1-hidroxihex-2-en-1-il)oxi)hexa-3,5-dien-1-il)hexanamida</td>
<td>1.72%</td>
<td>341.22</td>
<td>C_{18}H_{31}NO_{5}</td>
</tr>
<tr>
<td>15</td>
<td>97.488</td>
<td>(Z)-4-hidroxi-5-((6-hidroxihexil)oxi)pent-4-en-2-in-1-il acetato</td>
<td>22.17%</td>
<td>256.13</td>
<td>C_{13}H_{20}O_{5}</td>
</tr>
<tr>
<td>16</td>
<td>99.553</td>
<td>Ácido (5E,14E)-3-hidroxi-8-oxohexadeca-5,14-dienoico</td>
<td>2.63%</td>
<td>282.18</td>
<td>C_{16}H_{26}O_{4}</td>
</tr>
<tr>
<td>17</td>
<td>107.943</td>
<td>(E)-ethil 6-((6-(butilamino)hex-1-en-1-il)oxi)-4-oxohexanoato</td>
<td>ND</td>
<td>327.24</td>
<td>C_{18}H_{33}NO_{4}</td>
</tr>
<tr>
<td>19</td>
<td>113.761</td>
<td>Ácido (3E,8E,11E)-18-(furano-2-il)octadeca-3,8,11-trien-13-inoico</td>
<td>ND</td>
<td>340.2</td>
<td>C_{22}H_{28}O_{3}</td>
</tr>
</tbody>
</table>

ND=No determinado

7.8.2 DIESI-MS y MS²

7.8.2.1 Fraccionamiento de MEBg y preparación de la muestra

El fraccionamiento de la muestra de raíces de Chilca de acuerdo al grado de polaridad permitió obtener 3 fracciones: Metanol > Acetato de etilo > Hexano. Posteriormente se probaron mezclas de disolventes que facilitaran la resuspensión de las fracciones y que además fueran compatibles y permitieran generar señales de alta intensidad relativa en los espectrómetros. En el cuadro 9, se presentan los resultados de la evaluación, para el caso de la fracción hexánica las pruebas posteriores se realizaron ocupando la mezcla de disolventes “A” (acetonitrilo/metanol), mientras que para la fracción en Acetato de etilo la mezcla de disolventes ocupada fue la “D” (acetonitrilo).
Cuadro 9. Elección de disolventes de acuerdo a la señal de intensidad relativa, espectrómetro de masa de cuadropolo Waters Corporation- Micromass ® ZQ™

<table>
<thead>
<tr>
<th>Mezcla de disolventes</th>
<th>Fracción hexánica</th>
<th>Fracción en Acetato de etilo</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (ACN/MeOH)</td>
<td>9x10⁶</td>
<td>7.0x10⁶</td>
</tr>
<tr>
<td>B (MeOH/IPA/H₂O)</td>
<td>1.8x10⁶</td>
<td>2.5x10⁶</td>
</tr>
<tr>
<td>C (IPA/ACN)</td>
<td>2.1x10⁶</td>
<td>6.0x10⁶</td>
</tr>
<tr>
<td>D (ACN)</td>
<td>3.0x10⁶</td>
<td>1.2x10⁷</td>
</tr>
</tbody>
</table>

Los espectros de masa para cada fracción, en modo positivo, son presentados en las Figuras 28-30. Las m/z con mayor grado de abundancia relativa, fueron seleccionados posteriormente para ser evaluadas de forma individual a través de espectrometría de masas en doble tamden y obtener así su huella molecular (patrón de fragmentación).

7.9 Espectros de masa adquiridos por Espectrometría de Masas de Inyección Directa por electrospray (DIESI-MS).

5386 y 1189 datos fueron obtenidos en modo de ionización ESI (+) y (-), respectivamente por DIESI-MS. Los archivos de datos originalmente fueron adquiridos como archivos .raw, luego mediante el uso del software MSconvert V.5.5.0 fueron convertidos a mzXML, lo cual permitió su lectura en el software Mmass para generar el alineamiento, integración y corrección del grupo de datos de las muestras estudiadas. Posteriormente las matrices de datos fueron construidas manualmente para efectuar el análisis estadístico multivariable en la plataforma Metaboanalyst 4.0.

7.9.1 Análisis multivariable de m/z en modo de ionización (+) y (-)

La prueba T-test (Figura 31) fue una de los ensayos exploratorios multivariables aplicados a los 4059 datos recabados en modo positivo (de los espectros de masas analizados), la misma fue empleada con un nivel de significancia de \(\alpha = 0.05 \). La gráfica obtenida permitió observar 26 puntos rojos que corresponden a los valores de m/z con diferencia estadística significativa, en las fracciones analizadas.
Figura 31. Gráfico de dispersión de los metabolitos identificados en los extractos de raíces ANOVA unifactorial, prueba de Tukey ($p<0.05$). Puntos en rojo representan las relaciones m/z que tuvieron diferencia estadística al compararlas entre las 3 fracciones.
Figura 32. Análisis de componentes principales (PCA) de todos los metabolitos detectados en extractos de raíces de *Baccharis glutinosa*.

En la figura 32 se observa el gráfico de PCA, que descompone el análisis de los metabolitos en 5 componentes principales, los cuales al considerarse todos explican 73.5% de la variabilidad de los 4059 datos de m/z analizados.
Actividad antiroya de MEBg: aspectos metabolómicos y génicos

Figura 33. Score plot del Análisis de Componentes Principales de todos los metabolitos detectados en *Baccharis glutinosa*.

Otro de los test estadísticos multivariables es la representación score plot (Figura 33) donde se consideran los dos componentes principales que explican el mayor efecto de analizar en tres fracciones los extractos de raíces de chilca (*Baccharis glutinosa*). El análisis permite la separación de variables organizados en clusters, en una gráfica de dos planos, la tendencia observada indica que dependiendo la naturaleza de la fracción, existieron m/z características para cada fracción.
Figura 34. “Heatmap”: análisis agrupado realizado en MetaboAnalyst 4. Usando espectros DIESI(+) MS de los metabolitos obtenidos en tres fracciones diferentes de los MEBg. El análisis fue realizado usando el método de distancia euclidiana con un algoritmo de agrupamiento “Ward” después de la normalización de la muestra mediante la escala de Pareto.
La clasificación jerárquica por “Clusters” puede fácilmente observarse en la representación gráfica de un mapa de color o “heat maps” (Figura 34). En el lado derecho de la gráfica se pueden observar las 100 m/z representativas de todas las muestras estudiadas e identificadas en el espectrómetro de masas. Las cuales se encuentran distribuidas de acuerdo al grado de abundancia relativa, en la parte inferior de la gráfica se representan las fracciones en las cuales fue particionado el extracto metanólico crudo. La escala de colores (-2 a 2) indica el porcentaje de abundancia relativa de las m/z detectada para cada fracción. Por igualdad de características observables el “heat map” clasificó en un dendograma las fracciones de estudio.
Figura 35. 25 Metabolitos más importantes identificados en MEBg por PLS-DA en Metaboanalyst 4.0, modo positivo.

Derivado del análisis predictivo obtenido por PLS-DA se encontraron los 25 metabolitos más importantes que fueron representativos en las 3 fracciones (Figura 35), para poder conocer la identidad se analizaron cada uno de los patrones de fragmentación (con los cuales se contaba) obtenidos en modo positivo por MS2 y con el uso de librerías de bases de datos internacionales de moléculas de espectros predichos in silico, literatura, y considerando la masa monoisotópica, los espectros de masa, la fórmula molecular más
probable y los patrones de fragmentación, se logró proponer putativamente la identidad de los metabolitos en los cuadros 8 y 9.

Figura 36. MS²: Patrón de fragmentación m/z=156, 30eV. Espectrómetro de masas con trampa de iones Thermo Scientific LCQ FleetTM Ion Trap
Actividad antiroya de MEBg: aspectos metabolómicos y génicos

Cuadro 10. Metabolitos más importantes identificados por MS2. ESI(+). Espectrómetro de masas con trampa de iones Thermo Scientific LCQ FleetTM Ion Trap

<table>
<thead>
<tr>
<th>Fracción</th>
<th>m/z [m+H]+ (Modo de ionización)</th>
<th>Patrón de fragmentación [m+H]+ (MS2)</th>
<th>Energía de ionización (V)</th>
<th>Fórmula Molecular</th>
<th>Compuesto putativo</th>
<th>Clase</th>
<th>Base de datos</th>
<th>Id base de datos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetato de etilo</td>
<td>284.1249(+)</td>
<td>228.17, 157.17, 170.08, 198</td>
<td>35</td>
<td>C7H${13}$O$_3$</td>
<td>5-(1-hidroxitridecil)oxolan-2-ona</td>
<td>Ácidos grasos</td>
<td>Metlin</td>
<td>93340</td>
</tr>
<tr>
<td></td>
<td>380.3365(+)</td>
<td>252.25, 266.25, 238.50, 280.25, 308.25, 197.25</td>
<td>35</td>
<td>C9H${17}$O$_3$</td>
<td>Multijuginol</td>
<td>Policétidos flavonoides</td>
<td>Metlin</td>
<td>48617</td>
</tr>
<tr>
<td></td>
<td>174.0679(+)</td>
<td>156.17, 97.92, 115.92, 132.08, 86</td>
<td>25</td>
<td>C$_3$H$_6$O$_3$</td>
<td>Ácido 3-hidroxi-nonanoico</td>
<td>Ácidos grasos</td>
<td>Metlin</td>
<td>35407</td>
</tr>
<tr>
<td></td>
<td>156.8757(+)</td>
<td>138.17, 113.83, 74.00, 97.92, 55.08, 128</td>
<td>30</td>
<td>C$_3$H$_6$O$_3$</td>
<td>Ácido 2,5-Furanodicarboxílico</td>
<td>Compuestos organoheterocíclicos compounds: furanos</td>
<td>MoNA</td>
<td>Spectrum HMDB0004812_ms_ms_2403</td>
</tr>
<tr>
<td></td>
<td>190.9425(+)</td>
<td>174.17, 156.00</td>
<td>25</td>
<td>C$_3$H$_6$O$_3$</td>
<td>Ácido (2S)-[(2S,3R,4R)-3,4-dihidroxi-5-oxotetrahidrofurano-2-yl][hidroxietanoico]</td>
<td>Ácido conjugado</td>
<td>Metlin</td>
<td>44758</td>
</tr>
<tr>
<td>Hexano</td>
<td>380.9073(+)</td>
<td>252.17, 325.17, 366.33, 123</td>
<td>30</td>
<td>C2H${10}$O$_5$</td>
<td>Multijuginol</td>
<td>Policétidos flavonoides</td>
<td>Metlin</td>
<td>48617</td>
</tr>
<tr>
<td></td>
<td>240.0411(+)</td>
<td>143.08, 97.17, 222.08, 183.08, 80.83</td>
<td>30</td>
<td>C$_3$H$_6$O$_3$</td>
<td>(Z)-3-hidroxi-1-(2-hidroxifenil)-3-fenilprop-2-en-1-ona; también conocido como (2')-beta-dihidroxchalcona</td>
<td>Policétidos flavonoides: chalconas</td>
<td>Metlin</td>
<td>43644</td>
</tr>
</tbody>
</table>
Actividad antiroya de MEBg: aspectos metabolómicos y genéticos

<table>
<thead>
<tr>
<th>Masa Molecular</th>
<th>Pico de Retención</th>
<th>Cuerpo</th>
<th>Pico de Retención</th>
<th>Componente Metabólico</th>
<th>Familia Metabólica</th>
<th>Base de Datos</th>
<th>Código Metabionet</th>
</tr>
</thead>
<tbody>
<tr>
<td>333.0255(+)</td>
<td>96.75, 309.33,</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>381.0341(+)</td>
<td>252.17, 325.17,</td>
<td>35</td>
<td>C<sub>2</sub>H<sub>5</sub>O<sub>6</sub></td>
<td>Multijuginol</td>
<td>Policétides: flavonoides</td>
<td>Metlin</td>
<td>48617</td>
</tr>
<tr>
<td>218.8543(+)</td>
<td>111, 147.17,</td>
<td>30</td>
<td>C<sub>15</sub>H<sub>22</sub>O<sub>6</sub></td>
<td>Dendrolasina (3-(4,8-Dimetil-3,7-nonadienil)-Furano)</td>
<td>Farnesenos</td>
<td>Metlin</td>
<td>71335</td>
</tr>
</tbody>
</table>

Metanol

<table>
<thead>
<tr>
<th>Masa Molecular</th>
<th>Pico de Retención</th>
<th>Cuerpo</th>
<th>Pico de Retención</th>
<th>Componente Metabólico</th>
<th>Familia Metabólica</th>
<th>Base de Datos</th>
<th>Código Metabionet</th>
</tr>
</thead>
<tbody>
<tr>
<td>365.1163(+)</td>
<td>203.08, 184.92,</td>
<td>25</td>
<td>C<sub>4</sub>H<sub>7</sub:NO<sub>9</sub></td>
<td>(2S)-7-Hidroxi-3-oxo-3,4-dihidro-2H-1,4-benzoxazin-2-il beta-D-glucopiranosido</td>
<td>Compuesto O-glicosil</td>
<td>MoNA Spectrum</td>
<td>CCMSLIB00000849622</td>
</tr>
<tr>
<td>332.8352(+)</td>
<td>240.25, 296.42,</td>
<td>30</td>
<td>C<sub>20</sub>H<sub>24</sub>O<sub>5</sub></td>
<td>Giberelina A51</td>
<td>Prenol-lípidos: isoprenoides</td>
<td>Metlin</td>
<td>41234</td>
</tr>
<tr>
<td>155.8606(+)</td>
<td>111.92</td>
<td>30</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Como resultado del análisis, se identificaron un total de 54 compuestos de MEBg en modo positivo y negativo. Los patrones de fragmentación (MS²) se utilizaron para determinar la identidad de cada metabolito en función de la masa molecular más probable, las bibliotecas en línea y el mecanismo de ruptura; la lista de metabolitos identificados se muestra en los cuadros 10 y 11. En este estudio, los flavonoides encontrados fueron multijuginol, (Z) -3-hidroxi-1- (2-hidroxifenil) -3-fenilprop-2-en-1-ona, 3'-metoxiquercetina y 12αβ-hidroxideguelina. La incidencia de 3'-metoxiquercetina fue reportada previamente por Moreira et al. 2003, en hojas de B. pseudotenuifolia. Así también la presencia de flavonoides, ácidos fenólicos y triterpenos extraídos de hojas y raíces de B. dracunculifolia los cuales han mostrado actividad biológica inmunomoduladora (Ramos et al., 2016; Figueiredo-Rinhel et al., 2013). Una molécula importante incluida en la clase diterpenoide tetracíclica son las giberelinas, compuestos de señalización u hormonas vegetales, que regulan muchos procesos de desarrollo como la germinación de semillas, elongación de raíces y brotes, floración y patrones de frutos (Shani et al., 2013), por lo tanto, conducen la síntesis de otras moléculas, en este estudio fue detectado en las raíces. Estudios in vitro han demostrado que los compuestos fenólicos como los flavonoides, cumarinas, ácido fenólico, lignanos, hidroxicinamatos y estilbenos pueden tener una actividad antioxidante considerable. La actividad antioxidante de los compuestos fenólicos se debe principalmente a sus propiedades redox, que les permiten actuar como agentes reductores (Barchan et al., 2014).

Por otro lado, la presencia de furanos 2, ácido 5-furandicarboxílico, dendrolasina (3- (4,8-Dimetil-3,7-nonadienil) -Furano) y 3-hidroxi-2-fenil-2,3,3a, 7a-tetrahidrofuro [3,2-b] piran-5-ona, coincide con los resultados obtenidos a través de GC-MS donde se encontró esta clase de moléculas con presencia de anillo de furano aunque de diferente masa molecular. La presencia de ácido (2E, 6E) -2- (4-Metilpent-3-en-1-il) -6- [3- (2,5-dihidro-2-oxofuran-3-il) -propilideno] hept-2-enedioico se encontró en las partes aéreas de B. thymifolia (Hikawczuk et al., 2008). Según Konovalov (2014), un tipo de poliacetileno comúnmente apreciado en algunas tribus de la familia Asteraceae son los furanopoliacetilenos.
El estudio de MEBg por DIESI-MS permitió además observar compuestos como el ácido 3, 4-dihidroxicinámico y el ácido 3- (3,4-dihidroxicinil) quinico los cuales pertenecen a la clase de fenilpropanoides y policétidos, incluidos los ácidos hidroxicinámicos, este tipo de moléculas se han reportado en las partes aéreas de B. grisebachii, B. chilco, B. trimera, B. retusa, B. incarum (hojas y tallos) y B. dracunculifolia (hojas, tallos y raíces) (Ramos et. al., 2016). García-Jiménez et al. (2018) reportaron que los ácidos cinámicos, 2-hidroxicinámico, 2,3 y 4-metoxicinámico fueron inhibidores de la tirosinasa. La importancia de la tirosinasa radica en que es una enzima cuprífera presente en tejidos de plantas, animales, bacterias y hongos que cataliza la producción de melanina y otros pigmentos de la tirosina por oxidación, las melaninas han sido consideradas como el escudo de los hongos por su capacidad de proteger el microorganismo contra un amplio rango de agresiones tóxicas, tanto de tipo ambiental como producto de la respuesta inmune del huésped durante la infección, principalmente se ha encontrado en la etapa de maduración de apresorios, como coadyuvante de la presión de turgor siendo depositada como una espesa capa fuera de la pared celular, en éste órgano de infección. Es así como la capa de melanina mantiene un tamaño de poro pequeño para prevenir el escape de principales osmólitos y glicerol mientras se mantiene la entrada osmótica de H₂O (Deising et al., 2000). Por tal motivo, se ha considerado que las melaninas tienen un papel importante en la virulencia de muchos microorganismos. De la misma forma extractos cinámicos obtenidos de la parte aérea de B. glutinosa parecen inhibir la β-1, 3-glucanasa (Buitimea et al., 2013), estas enzimas son importantes para el desarrollo de los hongos por sintetizar componentes de la pared celular. Asimismo, los derivados del ácido cinámico son compuestos importantes con una amplia gama de actividades: antifúngicos, antibacterianos, antioxidantes, antiinflamatorios y antitumorales (Taofiq et al., 2017).
Cuadro 11. Metabolitos más importantes identificados por MS², ESI (-). Espectrómetro de masas con trampa de iones Thermo Scientific LCQ FleetTM Ion Trap

<table>
<thead>
<tr>
<th>Fracción</th>
<th>[m-H]⁻ m/z (modo de ionización [m-H]⁻ (MS²))</th>
<th>Patrón de fragmentación [m-H]^⁻ (MS²)</th>
<th>Energía de ionización (V)</th>
<th>Fórmula molecular</th>
<th>Compuesto putativo</th>
<th>Clase</th>
<th>Base de datos</th>
<th>ID base de datos</th>
</tr>
</thead>
<tbody>
<tr>
<td>174(-)</td>
<td>156, 98, 116, 138, 86, 69, 54</td>
<td>25</td>
<td>C₁₇H₁₉O₆</td>
<td>Ácido (3R,4S,5R)-3,4,5-trihidroxiciclohex-1-enecarboxílico</td>
<td>Ácido ciclohexanecarboxílico</td>
<td>MoNA</td>
<td>Spectrum PR100485</td>
<td></td>
</tr>
<tr>
<td>265(-)</td>
<td>96</td>
<td>35</td>
<td>C₁₈H₁₈O₄</td>
<td>2-(4-hidroxi-3-prop-2-enil-fenil)- 4-prop-2-enil-fenol</td>
<td>Benceno y derivados</td>
<td>MoNA</td>
<td>Spectrum FiehnHILIC001252</td>
<td></td>
</tr>
<tr>
<td>Etil acetato</td>
<td></td>
<td></td>
<td>C₁₄H₁₀NO₆</td>
<td>(3,4,5-trihidroxi-6-metiloxan-2-il) 2-(metilamino)benzoato</td>
<td>Compuestos organo-oxigenados: Carbohidratos y carbohidratos conjugados</td>
<td>MoNA</td>
<td>Spectrum VF-NPL-QEHF019193</td>
<td></td>
</tr>
<tr>
<td>297(-)</td>
<td>182.92, 196.92, 211.83, 233</td>
<td>30</td>
<td>C₂₁H₄₂O₇</td>
<td>3'-Metoxiquercetina</td>
<td>Flavonoides: flavonoles</td>
<td>MoNA</td>
<td>Spectrum PR100640</td>
<td></td>
</tr>
<tr>
<td>316(-)</td>
<td>106, 298.33, 189.25, 272.25</td>
<td>30</td>
<td>C₁₆H₁₂O₇</td>
<td>3'-Metoxiquercetina</td>
<td>Flavonoides: flavonoles</td>
<td>MoNA</td>
<td>Spectrum PR100640</td>
<td></td>
</tr>
<tr>
<td>325(-)</td>
<td>182.92, 196.92, 169.92, 224, 261</td>
<td>30</td>
<td>C₂₁H₂₀O₇</td>
<td>Ácido heneicosanoico</td>
<td>Ácidos grasos: Ácidos grasos y conjugados</td>
<td>MoNA</td>
<td>EXPO_D10_5ppm_NEG_iTree</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C₁₈H₁₂O₃</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,4-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dihidroxichalcona, también se conoce como 3-(2,4-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dihidroxifenil)-1-fenil-2-propen-1-ona</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oxireno(c)fenantro(1,2-d)piran-3,8(3aH,4bH)-diona, 1-(3-furanil)-1,5,6a,7,10a,10b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lípidos: Triterpenoides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compuestos órgano-oxigenados: fenileteronas</td>
<td>MoNA</td>
<td>Spectrum VF-NPL-QEHF011678</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>---------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexano</td>
<td>182.92(--)</td>
<td>138.92, 118.92, 166.75, 155</td>
<td>25</td>
<td>C₈H₁₀O₄</td>
<td>4-O-Metilfloracetofenona</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>325.17(--)</td>
<td>182.92, 197, 169.92, 261.08, 239.08</td>
<td>30</td>
<td>C₈H₁₀O₃</td>
<td>(Z)-3-hidroxi-1-(2-hidroxifenil)-3-fenilpro-2-en-1-ona; también se llama conocido como 2'-beta-Dihidroxichalcona</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>383(--)</td>
<td>337.42, 365.25</td>
<td>30</td>
<td>C₈H₁₀O₄</td>
<td>5-[(Z)-12-(3,5-dihidroxifenil)dodec-8-enil]benzeno-1,3-diol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>411(--)</td>
<td>365.42, 337.08, 382, 395.25, 349.17, 251.08</td>
<td>30</td>
<td>C₈H₁₀O₄</td>
<td>12αβ-hidroxidegulina</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>142.75(--)</td>
<td>99.83, 98.92, 110.75, 72.75, 123, 125.17</td>
<td>25</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>255.25(--)</td>
<td>227, 211, 196.83, 236.92</td>
<td>25</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>311(--)</td>
<td>482.92, 196.92, 247.08, 169.92, 196.92</td>
<td>30</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
Actividad antiroya de MEBg: aspectos metabólicos y génicos

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>219, 340.75, 303.08, 377(-)</td>
<td>25</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>314.92, 191, 182.92, 331.08, 159</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>419.42, 393.17, 407.33, 353.08, 332.83, 455.33(-)</td>
<td>25</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>407.67, 469.08, 243.25, 271.08, 425.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>397.25, 382.08, 367, 484.17, 255, 453.42, 407.67, 469.08, 610.58, 627.58, 581.5, 278.233, 499(-)</td>
<td>25</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>610.58, 627.58, 581.5, 278.233</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>391.42, 256.25, 409.17, 671(-)</td>
<td>30</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>610.58, 627.58, 581.5, 278.233</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>263.08, 239.08, 209.08, 281.33(-)</td>
<td>25</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>124.92, 111, 191, 252.92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>182.92, 310.17, 261.17, 281, 225, 238, 325(-)</td>
<td>30</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Actividad antiroya de MEBg: aspectos metabolómicos y génicos

<table>
<thead>
<tr>
<th>Compuesto</th>
<th>Formula</th>
<th>Concentración</th>
<th>Masa Molecular</th>
<th>Spectrum</th>
</tr>
</thead>
<tbody>
<tr>
<td>233(-)</td>
<td>143,08, 171,08, 127, 156,83, 186,75</td>
<td>25</td>
<td>C₁₀H₁₀O₄</td>
<td>MoNA Spectrum VF-NPL-L.TQ004696</td>
</tr>
<tr>
<td>515(-)</td>
<td>353, 191, 427,58, 334,92, 317, 399, 172,75</td>
<td>20</td>
<td>C₂₀H₂₂O₁₂</td>
<td>MoNA Spectrum CCMSLIB00000081755</td>
</tr>
<tr>
<td>793(-)</td>
<td>647,25, 571,42, 393,83, 585,33, 629,25, 603,08, 553,08</td>
<td>25</td>
<td>C₃₆H₅₆O₁₀</td>
<td>MoNA Spectrum CCMSLIB000000849986</td>
</tr>
<tr>
<td>Metanol</td>
<td>134,92, 163,92, 88,67, 68,83</td>
<td>20</td>
<td>C₁₇H₂₄O₁₀</td>
<td>MoNA Spectrum KO000511</td>
</tr>
<tr>
<td>311(-)</td>
<td>182,83, 250,92, 197, 280,83, 170,92, 210,75, 140,50, 122,67</td>
<td>35</td>
<td>C₁₉H₂₁NO₄</td>
<td>PubChem 248507</td>
</tr>
<tr>
<td>333(-)</td>
<td>191, 178,92, 172,92, 131, 196,92, 585,25, 647,33, 107,17, 817,42, 634,75</td>
<td>35</td>
<td>C₁₆H₁₀O₈</td>
<td>PubChem 1794427</td>
</tr>
<tr>
<td>835(-)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Actividad antiroya de MEBg: aspectos metabólicos y génicos

<table>
<thead>
<tr>
<th></th>
<th>835.33, 727.17, 647.33, 629.17, 254.92, 769.33</th>
<th>915(-) 30 - - - - -</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>92.83, 126.83, 108.83, 154.83, 172.83</td>
<td>191(-) 20 - - - - -</td>
</tr>
<tr>
<td></td>
<td>489, 416.83, 367.25, 365.50, 527.25, 479.17</td>
<td>568(-) 25 - - - - -</td>
</tr>
<tr>
<td>877(-)</td>
<td>585.17, 513.25, 629, 33, 471.33, 859, 479.25</td>
<td>45 - - - - -</td>
</tr>
<tr>
<td></td>
<td>323.33</td>
<td>369(-) 30 - - - - -</td>
</tr>
<tr>
<td>383(-)</td>
<td>337.42</td>
<td>30 - - - - -</td>
</tr>
<tr>
<td></td>
<td>352.33, 396.17, 382.75</td>
<td>398(-) 25 - - - - -</td>
</tr>
<tr>
<td>472(-)</td>
<td>408.50, 444.08, 410.25, 316.25, 454.25, 288.33, 426.58, 370, 158.92, 300, 311, 324, 370, 300</td>
<td>25 - - - - -</td>
</tr>
<tr>
<td></td>
<td>365.33</td>
<td>411(-) 25 - - - - -</td>
</tr>
</tbody>
</table>
La presencia de metabolitos bioactivos con potencial antifúngico en los MEBg sugiere que podrían romper la primera comunicación entre la planta y la uredospora. Para comprender los niveles de incidencia en los que podrían influir los compuestos bioactivos identificados putativamente, es necesario explicar qué pasa en el proceso de infección de la uredospora:

En las etapas que comprenden el proceso de infección de los hongos fitopatógenos (Figura 37) se ha demostrado que podrían existir objetivos diana de metabolitos específicos los cuales impactan con selectividad algún estadio de la infección, impidiendo así el desarrollo del hongo (Thines et al., 2004). Por lo cual la etapa de morfogénesis del apresorio y los eventos que la regulan son estudiados como potenciales blancos de fungicidas. Aunque varios tipos de adhesión, entre uredospora y superficie de hoja, son los que pueden presentarse ha sido comprobado p.e. que Magnaporthe grisea libera una sustancia de adhesión que permite sujetarse firmemente sobre la superficie de la hoja altamente hidrófoba. El pegamento de adhesión muy probablemente está compuesto de glicoproteínas y se ha demostrado que puede ser inhibido con la presencia de concavalina A (Hamer et al., 1988).

La firme fijación de las uredosporas del hongo a la superficie hidrófoba de la hoja también ha sido atribuida a la presencia de enzimas hidrolíticas, especialmente cutinasa o esterasas no específicas, en la matriz extracelular. Por lo que el trabajo presentado en ésta investigación comprueba esa afirmación hecha por Deising et al., (1992), ya que hubo una disminución en el contenido de proteínas intra y extra celulares de las uredosporas que previamente se trataron con

Figura 37. Objetivos diana potenciales en proceso de infección de H. vastatrix.
MEBg, y de la misma forma se confirmó con el ensayo de actividad enzimática (Figura 18). Lo cual permite confirmar que los MEBg inhiben la presencia de proteínas importantes para el desarrollo de la germinación con actividad esterasa impactando así sobre el primer contacto uredospora-hoja, conllevando a la eliminación de la detección de señal de hidrofobicidad de la hoja a través de la proteína transmembrana G subunidad α de la uredospora (Figura 25). Stanley et al. (2002), reportaron que el metabolito ácido zostérico (ácido p-(sulfo-oxi) cinámico) obtenido de plantas inhibe la adhesión de la espora y por consiguiente la infección de *M. grisea* y *C. lindemuthianum* sobre superficies hidrofóbicas.

El análisis de metabolitos bioactivos permitió identificar en éste trabajo la presencia de dos derivados de ácidos cinámicos que se sugiere podrían estar actuando como inhibidores de la adhesión de espora a la hoja. La germinación de las esporas de hongos fitopatógenos puede ser estimulada por varios factores, uno de las principales como se ha mencionado previamente es la presencia de una superficie adecuada altamente hidrófoba, la adhesión, la inducción física o química, así como la pérdida de auto inhibidores (Thines, 2004). Las esporas de la mayoría de los hongos fitopatógenos contienen potentes autoinhibidores presentes de manera natural, los cuales previenen la germinación siempre y cuando las sustancias autoinhibidoras no hayan sido retiradas en contacto con agua. Entre esas sustancias se encuentran metil-cis-3,4-dimetoxicinamato en uredosporas de *Uromyces appendiculatus*, micosporina-alanina en *Colletotrichum* spp., gloeosporona, (Z)- y (E) etilideno-1,3-dihidroindol-2-ona de *C. gloesporioides*. Otra etapa importante en el avance de infección de la roya, es la formación del apresorio (Figura 37) el cual ocurre luego de un corto período de crecimiento hifal sobre la superficie de la hoja en la punta del tubo de germinación, en *Magnaporth grisea* se ha observado la presencia en la punta de una especie de gancho que parece probar la superficie (Bourett y Howard, 1990). El apresorio es usualmente formado luego de la percepción de señal en el plasma de la membrana durante el estadio donde en la punta de hifa se presenta la forma de gancho. Esa señal transducida que guía a la formación de apresorio puede ser física, por identificación de la topografía percibida de la hoja, en la etapa dicariótica del hongo a través de la cadena de señalización previamente mencionada. En la formación de apresorio la mayoría del contenido de la célula germinada es translocada en ella, ese contenido principalmente está
Actividad antiroya de MEBg: aspectos metabolómicos y génicos

conformado por gotículas de lípidos y gránulos de glucógeno (Thines et al., 2000). Varios compuestos naturales han sido identificados como inhibidores específicos de la formación de apresorio en Magnaporthe grisea, tales como 4 glisopreninas aisladas del hongo Clonostachys rosea siendo la más efectiva glisoprenina C, neobulgarona D (derivado de antraquinona), 4-germacradeno-2,6,12-triol y 1,6-farnesadieno-3,10,11-triol (clase farneseno). De entre la clase de metabolitos encontrados en éste trabajo, también se reportó la presencia de un derivado de farneseno (3-(4,8-Dimetil-3,7-nonadienyl)-Furano). De la misma forma la maduración de l

apresorio ha resultado un punto importante de estudio en la etapa infectiva de los hongos. En M. grisea se ha demostrado la presencia de inhibidores de ésta fase por contacto con cumarinas (metabolitos secundarios de plantas), Scytalol (aislado del hongo Scytalidium sp.) y cerulenina (aislado del hongo Cephalosporium caerulens) (Thines et al., 2004).

Figura 38 Corte histológico, uredospora sobre tejido foliar Objetivo 40X

Como ha sido mencionado, el primer contacto entre la uredospora y la hoja es fundamental para activar a través de proteínas transmembranales, la cadena de señalización (Figura 34), ya que mediante ellas, estímulos extracelulares del entorno son transducidas al interior de la uredospora convergiendo en la cascada de reacciones intracelulares que finalmente guían el avance de la infección, al activarse factores de transcripción que median la síntesis de proteínas importantes para el mantenimiento de la pared y membrana celular, así como el desarrollo de órganos de infección y morfogénesis. Para tratar de comprender la interacción
de los compuestos bioactivos de MEBg con las proteínas transmembrana de la uredospora, es necesario considerar las estructuras químicas de los metabolitos identificados putativamente en MEBg, de tal forma que la mayoría de éstas estructuras químicas son polihidroxiladas con grupos funcionales fenoles o bien polifenoles. Los grupos hidroxilos pueden formar varios enlaces por puente de hidrógeno con átomos electronegativos como O ó N en péptidos y proteínas (Figura 39). Así también los grupos funcionales fenólicos llevan uno o varios grupos OH, que pueden disociarse en parte para cargar negativamente iones fenolatos en condiciones fisiológicas. Estos grupos cargados negativamente forman fácilmente enlaces iónicos con grupos amino cargados positivamente de residuos de aminoácidos en proteínas. Si metabolitos, como moléculas polifenoles forman varios enlaces de hidrógeno y iónicos con una proteína o con su sitio de unión o catalizador, la estructura y la flexibilidad funcional de la proteína se deteriora de manera irreversible (Wink, 2015), lo cual pudo haber ocurrido en las uredosporas de *Hemileia vastatrix*, inoculadas en hojas de cafeto que previamente habían sido tratadas previamente con MEBg.
Figura 39. Compuestos bioactivos de MEBg y su interacción molecular con proteínas transmembranales de uredosporas de *H. vastatrix*. Adaptado de Wink, 2015.
CAPÍTULO VIII.- CONCLUSIONES

El análisis por fijación de hojas, fue una metodología confiable que permitió evaluar el efecto de los extractos metanólicos de raíces de B. glutinosa sobre la germinación y formación de apresorio en uredosporas de H. vastatrix. Lo que permitió confirmar que la aplicación de concentraciones de MEBg >1 mg·mL\(^{-1}\), sobre hojas del cafeto (Coffea arabica Var. Bourbón y var. Caturra), en efecto inhiben la germinación de uredosporas de H. vastatrix y reducen la cantidad de apresorio formado presentando diferencias significativas tanto en nivel in vitro como invernadero. Por otro lado, la estrategia de análisis quimiométrico propuesto permitió identificar por vez primera los principales metabolitos, policétidos (flavonoides, flavonoles, isoflavonas, chalconas), organoheterocíclicos, (furanos y furopiranos), ácidos grasos y farneseno presentes en MEBg. La naturaleza química de los metabolitos encontrados podrían estar incidiendo en diferentes niveles de la etapa infectiva del desarrollo del hongo: evitando la adhesión, inhibiendo la germinación e induciendo la falta de formación y maduración de apresorio.

Los MEBg contienen sustancias bioactivas, que impactan sobre dos puntos importantes: obstaculizando el contacto uredospora/superficie de hoja o bien enlazándose de manera irreversible a proteínas diana de la cascada de señalización originando la disminución en la expresión de proteínas importantes. Aunado a esto, el análisis de expresión de genes confirmó que los MEBg parecen causar una represión a la vista en genes de señalización como MAPKínasa (Hv_00858) y Proteína Ga, en los primeros días de la infección. Así mismo, la respuesta bioquímica evaluada en las uredosporas evidenció la inhibición de actividad de las enzimas esterasas en presencia de MEBg a nivel intra y extracelular, evitando de ésta forma la adhesión de esporas a la planta hospedera lo que permite comprender las bajas velocidades de germinación reportadas en éste trabajo. Ésta investigación, contribuye al estudio de la actividad biológica de los compuestos bioactivos de MEBg estudiados por vez primera en uredosporas de la roya del cafeto y a la comprensión del rol de los genes expresados en H. vastatrix en estadios tempranos del proceso de infección.
Actividad antiroya de MEBg: aspectos metabolómicos y génicos

CAPÍTULO IX.- BIBLIOGRAFÍA

Avelino, J., y Rivas, G. (2013). La roya anaranjada del café. HAL. http://hal.archives-ouvertes.fr/hal-01071036

Actividad antiroya de MEBg: aspectos metabólicos y génicos

Buitimea, G.V., Rosas, C., Cinco, F., Burgos, A., Plascencia, M., Cortez, M.O., y Gálvez, J.C. (2013). In vitro effect of antifungal fractions from the plants *Baccharis glutinosa* and *Jacquinia macrocarpa* on chitin and β-1,3-glucan hydrolysis of maize phytopathogenic fungi and on the fungal β-1,3-glucanase and chitinase activities. Journal of Food Safety. 33, 526-535.

Actividad antiroya de MEBg: aspectos metabolómicos y génicos

FEWS NET, RUTA, & PROMECAFE (2014). Coffee producer and laborer income to decline for a second consecutive year. Special Report Central America (pp. 7).

García-Flores, M., Juárez-Colunga, S., García-Cascarrubias, A., Trachsel, S., Winkler, R., Tiessen, A. Metabolic profiling of plant extracts Using Direct-Injection electrospray ionization mass spectrometry allows for high-throughput phenotypic characterization according to genetic and environmental effects. J. Agric. Food Chem. 2015, 63, 1042-1052. DOI: 10.1021/jf504853w

Actividad antirroa de MEBg: aspectos metabolómicos y génicos

Actividad antiroya de MEBg: aspectos metabolómicos y génicos

Actividad antiroya de MEBg: aspectos metabolómicos y génicos

URL: http://www.nuprec.com/Nuprec_Sp_archivos/CAFE/CAFETO_archivos/Roya_archivos/Literatura%20Roya/FichaT%C3%A9cnicaRoyadelCafeto.pdf

Stanley, M. S., Callow, M. E., Perry, R., Alberte, R. S., Smith, R., y Callow, J. A. (2002). Inhibition of fungal spore adhesion by zosteric acid as the basis for a novel, nontoxic crop protection technology. Phytopathology 92, 378–383.

Actividad antiroya de MEBg: aspectos metabolómicos y genómicos

Actividad antiroya de MEBg: aspectos metabolómicos y génicos

CAPÍTULO X. ANEXOS

A) Ensayo de bajas concentraciones (in vitro). Efecto de extractos de raíces de Chilca sobre % de germinación de roya

24 h después de inocular

ANOVA Simple - % de espora germinada por Tratamiento
Variable dependiente: % de espora germinada
Factor: Tratamiento

Número de observaciones: 84
Número de niveles: 8

Cuadro ANOVA para % de espora germinada por Tratamiento

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Suma de Cuadrados</th>
<th>G</th>
<th>Cuadrado Medio</th>
<th>Razón-F</th>
<th>Valor-P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>50277.3</td>
<td>7</td>
<td>7182.47</td>
<td>299.11</td>
<td>0.0000</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>1824.97</td>
<td>76</td>
<td>24.0128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>52102.2</td>
<td>83</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

El StatAdvisor
La cuadro ANOVA descompone la varianza de % de espora germinada en dos componentes: un componente entre-grupos y un componente dentro-de-grupos. La razón-F, que en este caso es igual a 299.11, es el cociente entre el estimado entre-grupos y el estimado dentro-de-grupos. Puesto que el valor-P de la prueba-F es menor que 0.05, existe una diferencia estadísticamente significativa entre la media de % de espora germinada entre un nivel de Tratamiento y otro, con un nivel del 95.0% de confianza. Para determinar cuáles medias son significativamente diferentes de otras, seleccione Pruebas de Múltiples Rangos, de la lista de Opciones Tabulares.

Medias y 99.0% de Tukey HSD
72 h después de inocular

ANOVA Simple - % de espora germinada por Tratamiento
Variable dependiente: % de espora germinada
Factor: Tratamiento

Número de observaciones: 69
Número de niveles: 8

Cuadro ANOVA para % de espora germinada por Tratamiento

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Suma de Cuadrados</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Razón-F</th>
<th>Valor-P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>40624.7</td>
<td>7</td>
<td>5803.53</td>
<td>584.69</td>
<td>0.0000</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>605.478</td>
<td>61</td>
<td>9.92587</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>41230.2</td>
<td>68</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

El StatAdvisor
La cuadro ANOVA descompone la varianza de % de espora germinada en dos componentes: un componente entre-grupos y un componente dentro-de-grupos. La razón-F, que en este caso es igual a 584.687, es el cociente entre el estimado entre-grupos y el estimado dentro-de-grupos. Puesto que el valor-P de la prueba-F es menor que 0.05, existe una diferencia estadísticamente significativa entre la media de % de espora germinada entre un nivel de Tratamiento y otro, con un nivel del 95.0% de confianza. Para determinar cuáles medias son significativamente diferentes de otras, seleccione Pruebas de Múltiples Rangos, de la lista de Opciones Tabulares.

Medias y 99.0% de Tukey HSD
B) *In planta*: Efecto de extractos de raíces de Chilca sobre % de germinación de roya

ANOVA Simple - % de espora germinada por Tratamiento

Variable dependiente: % de espora germinada
Factor: Tratamiento

Número de observaciones: 20
Número de niveles: 2

El StatAdvisor
Este procedimiento ejecuta un análisis de varianza de un factor para % de espora germinada. Construye varias pruebas y gráficas para comparar los valores medios de % de espora germinada para los 2 diferentes niveles de Tratamiento. La prueba-F en la cuadro ANOVA determinará si hay diferencias significativas entre las medias. Si las hay, las Pruebas de Rangos Múltiples le dirán cuáles medias son significativamente diferentes de otras. Si le preocupa la presencia de valores atípicos, puede elegir la Prueba de Kruskal-Wallis la cual compara las medianas en lugar de las medias. Las diferentes gráficas le ayudarán a juzgar la significancia práctica de los resultados, así como le permitirán buscar posibles violaciones de los supuestos subyacentes en el análisis de varianza.

El StatAdvisor
Esta cuadro muestra diferentes estadísticos de % de espora germinada para cada uno de los 2 niveles de Tratamiento. La intención principal del análisis de varianza de un factor es la de comparar las medias de los diferentes niveles, enlistados aquí bajo la columna de Promedio. Selecciones Gráfica de Medias de la lista de Opciones Gráficas para mostrar gráficamente las medias.

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Suma de Cuadrados</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Razón-F</th>
<th>Valor-P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>28050.1</td>
<td>1</td>
<td>28050.1</td>
<td>852.15</td>
<td>0.0000</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>592.5</td>
<td>18</td>
<td>32.9167</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>28642.6</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

El StatAdvisor
Este cuadro aplica un procedimiento de comparación múltiple para determinar cuáles medias son significativamente diferentes de otras. La mitad inferior de la salida muestra las diferencias estimadas entre cada par de medias. Se ha colocado un asterisco junto a 1 par, indicando que este par muestra diferencias estadísticamente significativas con un nivel del 95.0% de confianza. En la parte superior de la página, se han identificado 2 grupos homogéneos según la alineación de las X's en columnas. No existen diferencias estadísticamente significativas entre aquellos niveles que comparten una misma columna de X's. El método empleado actualmente para discriminar entre las medias es el procedimiento de diferencia honestamente significativa (HSD) de Tukey. Con este método hay un riesgo del 5.0% al decir que uno o más pares son significativamente diferentes, cuando la diferencia real es igual a 0.
C) Actividad esterasas: % de uredosporas con actividad

ANOVA Multifactorial - % Esporas con actividad
Variable dependiente: % Esporas con actividad
Factores:
- Naturaleza de la espora
- Tratamiento

Análisis de Varianza para % Esporas con actividad - Suma de Cuadrados Tipo III

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Suma de Cuadrados</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Razón-F</th>
<th>Valor-P</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFECTOS PRINCIPALES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A:Naturaleza de la espora</td>
<td>6.05</td>
<td>1</td>
<td>6.05</td>
<td>0.18</td>
<td>0.6806</td>
</tr>
<tr>
<td>B:Tratamiento</td>
<td>1496.45</td>
<td>1</td>
<td>1496.45</td>
<td>43.47</td>
<td>0.0000</td>
</tr>
<tr>
<td>INTERACCIONES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AB</td>
<td>2.45</td>
<td>1</td>
<td>2.45</td>
<td>0.07</td>
<td>0.7930</td>
</tr>
<tr>
<td>RESIDUOS</td>
<td>550.8</td>
<td>16</td>
<td>34.425</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL (CORREGIDO)</td>
<td>2055.75</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Todas las razones-F se basan en el cuadrado medio del error residual

El StatAdvisor
La cuadro ANOVA descompone la variabilidad de % Esporas con actividad en contribuciones debidas a varios factores. Puesto que se ha escogido la suma de cuadrados Tipo III (por omisión), la contribución de cada factor se mide eliminando los efectos de los demás factores. Los valores-P prueban la significancia estadística de cada uno de los factores. Puesto que un valor-P es menor que 0.05, este factor tiene un efecto estadísticamente significativo sobre % Esporas con actividad con un 95.0% de nivel de confianza.
D) Actividad esterasas: % de actividad en citoplasma

ANOVA Multifactorial - % Actividad en citoplasma

Variable dependiente: % Actividad en citoplasma
Factores:
 - Naturaleza de la espora
 - Tratamiento

El StatAdvisor
Este procedimiento ejecuta un análisis de varianza de varios factores para % Actividad en citoplasma. Realiza varias pruebas y gráficas para determinar que factores tienen un efecto estadísticamente significativo sobre % Actividad en citoplasma. También evalúa la significancia de las interacciones entre los factores, si es que hay suficientes datos. Las pruebas-F en la cuadro ANOVA le permitirán identificar los factores significativos. Para cada factor significativo, las Pruebas de Rangos Múltiples le dirán cuales medias son significativamente diferentes de otras. La Gráfica de Medias y la Gráfica de Interacciones le ayudarán a interpretar los efectos significativos. Las Gráficas de Residuos le ayudarán a juzgar si los datos han violado los supuestos subyacentes al análisis de varianza.

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Suma de Cuadrados</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Razón-F</th>
<th>Valor-P</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFECTOS PRINCIPALES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A:Naturaleza de la espora</td>
<td>168.2</td>
<td>1</td>
<td>168.2</td>
<td>3.37</td>
<td>0.0849</td>
</tr>
<tr>
<td>B:Tratamiento</td>
<td>8080.2</td>
<td>1</td>
<td>8080.2</td>
<td>162.01</td>
<td>0.0000</td>
</tr>
<tr>
<td>INTERACCIONES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AB</td>
<td>0.8</td>
<td>1</td>
<td>0.8</td>
<td>0.02</td>
<td>0.9008</td>
</tr>
<tr>
<td>RESIDUOS</td>
<td>798.0</td>
<td>16</td>
<td>49.875</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL (CORREGIDO)</td>
<td>9047.2</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Todas las razones-F se basan en el cuadrado medio del error residual

El StatAdvisor
La cuadro ANOVA descompone la variabilidad de % Actividad en citoplasma en contribuciones debidas a varios factores. Puesto que se ha escogido la suma de cuadrados Tipo III (por omisión), la contribución de cada factor se mide eliminando los efectos de los demás factores. Los valores-P prueban la significancia estadística de cada uno de los factores. Puesto que un valor-P es menor que 0.05, este factor tiene un efecto estadísticamente significativo sobre % Actividad en citoplasma con un 95.0% de nivel de confianza.
Actividad antirroya de MEBg: aspectos metabolómicos y génicos

Medias y Errores Estándar (s interna)

% Actividad en citoplasma

5 mg/mL control

Tratamiento control

30 40 50 60 70 80

5 mg/mL
E) “Heat maps” de datos obtenidos por DIESI-MS en modo (-).
F) PLS-DA de los 20 metabolitos más abundantes en las tres fracciones por DIESI-MS modo (-).
G) Análisis de Componentes Principales de datos adquiridos por DIESI-MS modo (-).

Component 1
38.2 %

Component 2
29 %

Component 3
7.7 %

Component 4
4.6 %

Component 5
6.5 %
H) ACP de datos adquiridos por DIESI-MS en modo (-).
I) Curva de calibración para cuantificación de proteínas por Método de Bradford