INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ

Alumno: Oscar Eduardo Solórzano Reynosa

Ingeniería mecánica

Nombre del proyecto:

“Propuesta para el diseño de un prototipo de un equipo automatizado expendedor de café colado apto para su consumo para la empresa Café del Pacífico S.A.P.I.”

Asesor interno: Ing. Hernán Valencia

Asesor externo: Rafael Gutiérrez Gómez
Contenido

CAPITULO I ... 5
1.1 INTRODUCCIÓN .. 5
1.2 PLANTEAMIENTO DEL PROBLEMA ... 5
1.3 OBJETIVOS .. 6
1.4 JUSTIFICACIÓN .. 6
1.5 ALCANCES Y LIMITACIONES .. 7
1.5.1 Alcances ... 7
1.6 DATOS DE LA EMPRESA .. 8
CAPITULO II ... 9
ESTADO DEL ARTE .. 9
2.1 Tipo de dispensadores de vasos más utilizados ... 9
 2.1.1 Dispensador de vasos convencional "DimensionKolor-Cut", .. 9
2.1.2 Dispensador de vasos Monoart® ... 9
2.2 Tipo de dispensadores de café ... 10
 2.2.1 Tipo de dispensadores de café Jede JM40 .. 10
 2.2.2 Tipos de dispensadores de café Expendedoras NectaCafeZanussi KIKKO 11
 2.2.3 Tipos de dispensadores de café Expendedoras CafeNectaZanussi BRIO 12
 2.2.4 Tipos de dispensadores de café Expendedoras de cafeIncontro Alice Club 13
 2.2.5 Tipos de dispensadores de café BIANCHI - Modelo: Sprint Espresso 14
 2.2.6 Tipos de dispensadores de café New Milano .. 15
 2.2.7 Tipos de dispensadores de café ZEN .. 16
 2.2.8 Tipos de dispensadores de café VITALE .. 17
 2.2.9 Tipo de dispensador de café Expendedor Maquina Cafe Vaso Automatico Sc8803m4 18
2.3 Dispensador de café con el que se va a trabajar: .. 19
 2.3.1 Dispensador de café tipo Korintocoffe .. 19
CAPITULO III ... 21
MARCO TEORICO ... 21
3.2 Nociones del Control ... 21
 3.2.1 Control de Dos Posiciones (encendido o apagado) ... 22
3.2.2 Control Lazo Abierto... 22
3.2.3 Control Proporcional .. 23
3.2.4 Controlador Proporcional Integral (PI) 23
3.2.5 Controlador Proporcional Derivativo (PD) 24
3.2.6 Control Proporcional Integral-Derivativo (PID) 25
3.3 AUTOMATIZACIÓN .. 26
3.2.1 Actuador .. 27
3.2.2 Servomotores .. 28
3.2.3 Motores a paso .. 29
3.2.4 Sensores ... 36
3.2.5 Sensor final de carrera .. 38
3.2.6 SISTEMAS MECANICOS ... 39
3.2.7 Mecanismos ... 40
3.2.8 SISTEMA BIELA MANIVELA CORREDERA 41
3.2.9 LA PALANCA .. 41
CAPITULO IV .. 43
METODOLOGÍA ... 43
BIBLIOGRAFIA .. 73

Índice de figuras

Figura 1. KolorCut .. 9
Figura 3.- Jede JM40 ... 10
Figura 4.- Zanussi KIKKO .. 11
Figura 5.- ZANUSSI BRIO .. 12
Figura 6.- Alice club .. 13
Figura 7.- Sprint Espresso .. 14
Figura 8.- New Milano .. 15
Figura 9.- Estructura ZEN ... 16
Figura 10.- VITALE ... 17
Figura 11.- Sc8803m4 ... 18
Figura 12.- Korinto ... 19
Figura 13.- Variedad de Korinto .. 20
Figura 14.- Lazo abierto ... 22
Figura 15.- Lazo cerrado .. 23
Figura 16.- control proporcional .. 23
Figura 17.- Proporcional integral .. 24
Figura 18.- Proporcional derivativo .. 24
Figura 19.- Proporcional integral derivativo ... 25
Figura 20.- Pasos para la automatizacion ... 27
Figura 21.- Partes de un servomotor ... 29
Figura 22.- servomotor comercial .. 29
Figura 23.- Motor ... 30
Figura 24.- imagen del rotor .. 31
Figura 25.- imagen de un estator de 4 bobinas ... 31
Figura 26.- Motor P-P Bipolar ... 31
Figura 27.- Motor P-P Unipolar ... 32
Figura 28.- Motor Supply ... 33
Figura 29.- Configuración de conexión para motor P-P Bipolar 33
Figura 30.- configuración de conexión para un motor a pasos 34
Figura 31.- Tipos de sensores ... 37
Figura 32.- sensor final de carrera .. 38
Figura 33.- biela manivela corredera .. 41
Figura 34.- Tipos de palanca .. 42
Figura 35.- Planos del vaso 1 ... 43
Figura 36.- Maquina con propuesta de dispensador ... 44
Figura 37.- Despachador de vasos diseño 1 ... 45
Figura 38.- Recipiente que contendrán los vasos ... 46
Figura 39.- Base de soporte ... 47
Figura 40.- base detiene vasos 1 .. 48
Figura 41.- Mecanismo para despacho automático de vasos .. 48
Figura 42.- Renderizado final .. 49
Figura 43.- Propuesta de diseño .. 52
Figura 44.- Medidas del vaso ... 53
Figura 45.- Fuerzas que actúan sobre el vaso ... 54
Figura 46.- Distribución de fuerzas .. 4854
Figura 47.- Arduino UNO ... 57
Figura 48.- Arduino Mega ... 4958
Figura 49.- Arduino Nano ... 529
Figura 50.- Arduino PRO .. 5360
Figura 51.- Circuito eléctrica ... 61
Figura 52.- Conexiones a Arduino ... 62

Índice de tablas

Tabla 1.- Secuencias para un motor a pasos ... 35
Tabla 2.- Secuencias de motor de 4 bobinas ... 35
CAPITULO I

1.1 INTRODUCCIÓN

Actualmente la venta de café es un negocio muy productivo, cada vez es más competitiva en el país y el mundo. Las empresas que se dedican a este giro comercial tienen que estar en continua actualización y modernización de sus equipos para ser competitiva y así tener una mejora continua.

Los dispensadores de café son utilizable en diversos lugares, desde un evento social hasta en tiendas de autoservicios o incluso en el hogar.

La empresa Caffenio cuenta con distintos equipos de café el proyecto se basa sobre un equipo automatizado preparador café, donde al seleccionar un tipo de café en botones conectados a un circuito electrónico, realiza la mezcla de porciones adecuadas de café, para ser disueltas con el agua caliente y así servirlas en un vaso que el cliente coloca en la parte inferior de la máquina.

1.2 PLANTEAMIENTO DEL PROBLEMA

Actualmente se ha introducido en el mercado de la compañía, equipos multifuncionales (Modelo Korinto) de café, este tipo de equipos tiene un alto nivel de venta, donde hay que ingresarles manualmente los vasos para el despacho de bebida deseada, esto merma tiempo al operador del equipo y eficiencia en sus labores de cobranza y servicio a los clientes al mismo tiempo que no se tiene un control de los vasos que se le proporciona a la tienda de autoservicio.

Es por ello que se pretende llevar un control de los vasos, automatizando el servicio de café, para que el cliente solo tenga que elegir su bebida y la obtenga, sin la necesidad de que ellos pongan los vasos o el despachador del autoservicio.
1.3 OBJETIVOS

Generales

- Diseñar un accesorio para el equipo de café capaz de despachar vasos de manera automática.

Específicos

- Analizar los dispositivos actuales existentes en el mercado.
- Diseñar un prototipo automático dispensador de vasos.
- Realizar análisis a los componentes del diseño.
- Hacer más eficiente el uso de recursos disponibles.

1.4 JUSTIFICACIÓN

La empresa Caffenio tiene el firme compromiso de actualizar sus equipos continuamente, para ser una de las empresas líderes en su ramo, es por ello que solicitan la automatización de sus equipos, en este caso se realizará la automatización del despachador de vasos.

Principalmente se ha encontrado la problemática, que en los lugares donde se han instalado estos equipos existe un descontrol de conteo de vasos, ya que el cajero se encuentra ocupado realizando otras actividades y queda en las manos del cliente sin saber qué pasa con ellos.

Es por ello que se desea realizar la automatización del despachador de vasos, ya que con esto se tendrá un control eficiente de los vasos, además de que el cliente verá un equipo moderno y llamativo, haciendo más eficiente las compras y mejorando el control de calidad e higiene.

Se trabajará con los equipos de servicio de bebidas (Korinto), actualmente la sucursal de caffenio cuenta con una máquina en operación en tienda soriana Poliforum Tuxtla en un establecimiento llamado “Gorditas doña Tota” el equipo ha
dado muy buenos resultados que se le quiere incorporar el dispositivo antes mencionado, se están haciendo las adecuaciones para instalar 2 equipos más en Coatzacoalcos y uno en Villahermosa en la misma franquicia de estas tiendas.

1.5 ALCANCES Y LIMITACIONES

1.5.1 Alcances

- Se podrá usar el dispositivo en cualquier otro equipo que requiera despachar vasos.
- Se logrará la automatización del servicio de vasos.
- Control de los vasos en los establecimientos

1.5.2 Limitaciones

- Este proyecto se limita únicamente a despachar vasos con un interfaz entre equipo y accesorio.
1.6 DATOS DE LA EMPRESA

¿Quiénes somos?

Somos una empresa 100% mexicana, ubicada en Hermosillo, Sonora, que vive en constante innovación, situación que nos ha llevado a convertirnos en una industria no solo fabricante de café, sino también desarrolladora de conceptos muy innovadores en torno a este mágico producto. Vivimos cada día innovando y buscando nuevas formas de llevar nuestra marca a más personas.

Misión de la empresa

Nuestro compromiso día a día:

Superamos las expectativas de nuestros clientes y creamos valor de manera única, basados en nuestro talento e innovación, asumiendo nuestra responsabilidad social.

Visión de la empresa

Ser una empresa líder en el desarrollo de Soluciones Integrales e Innovadoras en bebidas y alimentos de Conveniencia, capaz de consolidar Conceptos de Negocio Propios y atender las necesidades de Clientes Estratégicos en México y otros países.

¿A qué se dedica la empresa?

La empresa es procesadora de café, apoya a la producción de café mediante un proyecto llamado cosecha.

Proveedora de servicios de mantenimientos a equipos en tiendas de conveniencia y propios.
CAPITULO II

ESTADO DEL ARTE

2.1 Tipo de dispensadores de vasos más utilizados.

2.1.1 Dispensador de vasos convencional "DimensionKolor-Cut",

Figura 1. KolorCut

Dispensador de vasos "DimensionKolor-Cut", disponible en 1, 2 y 3 compartimentos y diseñado para alojar diferentes tamaños de vasos de papel o plástico. Mantiene organizada la estación de bebidas evitando la excesiva manipulación de envases, logrando un buen nivel de higiene. Evita las mermas de producto y reduce las áreas de almacenamiento. Disponible en gabinete de metal.

2.1.2 Dispensador de vasos Monoart®

Figura 2.- Monoart

Practico dispensador de vasos Monoart® para colgar a pared, capacidad de 70 vasos de 200 cc y 80 vasos de 166 cc. Color: blanco y cuerpo ahumado transparente
2.2 Tipo de dispensadores de café.

2.2.1 Tipo de dispensadores de café Jede JM40

Figura 2.- Jede JM40

El dispensador de café y bebidas Jede JM40 puede utilizarse con una amplia variedad de productos tales como café, chocolate, tés y caldos.

Todos nuestros productos son de marcas de máxima calidad: Knorr, Maggi, Nestlé, Van Houten.

Este dispensador permite que cada uno dosifique la bebida a su gusto. La máquina de bebidas Jede JM40 es de muy fácil manejo y además se puede colocar en cualquier lugar de su oficina y cambiarlo de ubicación siempre que quiera ya que no necesita instalación y es muy manejable.
2.2.2 Tipos de dispensadores de café: Expendedoras NectaCafeZanussi KIKKO

Figura 3.- Zanussi KIKKO

Las máquinas de café KIKKO de la marca NECTA. La solución a sus necesidades.

Modelos: Kikko Max Exprés (620 vasos) Kikko Max Instant (620 vasos)
Kikko Exprés (500 vasos) KikkoInstant (500 vasos)

Características:

- Amplia elección y excelente calidad de bebidas erogadas.
- Contenedores modulares de nueva concepción
- Optima accesibilidad interna, gracias a la abertura a 180° de la torreta de vasos con articulación doble
- Facilidad de reposición de productos por la parte superior, debido a la posibilidad de levantar la tapa / techo de la maquina
- Por sus sistemas de anclajes y sus nuevas soluciones técnicas, facilitan los trabajos de limpieza y mantenimiento
- Electrónica avanzada de 16 bits (maestro / esclavo con Snakky)
- Cerradura con código programable
- Diseño coordinado con Snakky
2.2.3 Tipos de dispensadores de café Expendedoras CafeNectaZanussi BRIO

Las máquinas expendedoras Brio de la marca Necta son de dimensiones muy reducidas.

Modelos: Brio 3 Exprés (300 vasos) Brio 3 Instant (300 vasos) Brio 250 Exprés (250 vasos)

Características:

- Amplia posibilidad de personalización gracias al panel fotográfico más amplio
- Grupo café Z 200 M
- Cup dispenser ergonómico, inclinable para una carga más fácil
- Instalación facilitada de los sistemas cashless
- Cerradura con código programable
- Tabla top automático con una capacidad de 250 vasos, puerta redondeada, mueble de color plata
2.2.4 Tipos de dispensadores de café

Expendedoras de café Incontro Alice Club

Figura 5.- Alice club

No requiere toma de agua externa, se utiliza garrafón. Temperatura regulable. Molino integrado dando como resultado un café tipo gourmet capacidad para 200 tazas de café. 12 tipos de bebidas (expreso corto, largo o cortado, americano, capuchinno, capuchinno club, chocolate, leche, súper chocolate, mokachino, vainilla francesa, café con leche, etc.)
2.2.5 Tipos de dispensadores de café BIANCHI - Modelo: Sprint Espresso

Figura 6.-Sprint Espresso

CARACTERÍSTICAS

• Molinillo integrado de alto desempeño.

• Preparación de 7 selección combinadas con café.

• 1 selección de agua caliente.

• Programación de lavado, auditoria de ventas manual.

• Pantalla Digital.

DIMENSIONES

Alto: 55cm - Ancho: 39cm - Fondo: 44cm

ALIMENTACIÓN ELÉCTRICA DE RED

230VAC - 50Hz
2.2.6 Tipos de dispensadores de café New Milano

Figura 7.- New Milano

Máquina de Café Automática. Sistema de dispensador de vasos automático con capacidad para 60 Vasos de 6.5 Oz. Sistema my CUP que permite dispensar sin vaso. 4

Dispensadores: Café, cortado , Capuchino mokaccino, chocolate, lo que nos permite 5 selecciones distintas. 1 Café 2 Cortado 3 Cappuccino 4 Chocolate 5 Mokaccino.

SUMINISTRO DE AGUA: Puede usar llenado externo de 12 o 20 Litros o Conexión al Agua con sistema de Filtro de carbón activado. Dimensiones (mm) 670x430x470. Dispensadores 4. Funcionamiento Automática.
2.2.7 Tipos de dispensadores de café ZEN

La autonomía es un factor clave en la rentabilidad de una operación de vending. Reducir los costes de mantenimiento y reposición han sido una premisa básica en el desarrollo de la serie Zen.

Zen ha sido diseñada para dar una autonomía real equivalente al número de vasos, mediante la optimización de la capacidad de café, leche y chocolate. Autonomía en días hasta 3 veces superior respecto a los competidores.

- Reduce costes en mantenimiento y reposición
- Incrementa el número de puntos por ruta sin incrementar los costes.
- Incrementa la rentabilidad de la operación de vending
2.2.8 Tipos de dispensadores de café VITALE

Figura 9.- VITALE

Vitale ha sido diseñada para hacer el mantenimiento extremadamente fácil:

- Fácil recarga de café y de solubles.
- Fácil llenado del depósito de agua.
- Fácil vaciado del cajón de residuos.
- Sistema de diagnóstico de incidencias
- Filtro antical que alarga la vida útil de la máquina.
2.2.9 Tipo de dispensador de café Expendedora Maquina Cafe Vaso Automatico Sc8803m4

4 opciones en bebidas calientes a elección: 3 contenedores (ej: cafe, leche y chocolate)

Posibilidades Distintos Sabores: Café, Cortado, Café con Leche, Capuchino con Chocolate, Capuchino con Dulce de Leche, Capuchino a la Vainilla, CaféIrlandes, Chocolate, Leche, Té al limón, Mate Cocido, ETC.

Expendio Automáticos De Vasos Plásticos (A diferencia de otras Expendedoras similares, esta NO utiliza vasos de papel por lo que se bajan absolutamente los costos por bebidas)

Botones De Selecciones Directa De Servicios, Para Una Simple Operación

Abastecimiento de agua por medio de un tanque interno de 3 litros rellenable en forma simple, puede colocarse también un bidón de agua de 20 litros estándar en la parte superior.
2.3 Dispensador de café con el que se va a trabajar:

2.3.1 Dispensador de café tipo Korintocoffe

El modelo Korinto está dirigido al mercado de HO.RE.CA. (Hoteles, Restaurantes y Cafeterías), complementa la gama de Necta con esta solución de bebidas múltiples. Como resultado del desarrollo de la avanzada tecnología de Necta, Korinto garantiza un alto rendimiento profesional, optimizando la alta calidad de sus bebidas y fácil uso. Con un diseño robusto que cuenta con un marco del área de recogida en acero inoxidable, área con capacidad para jarras de hasta 24 cm., botones de selección de uso fácil, Korinto es ideal para cualquier entorno.

Diseño robusto

Un dispensador de super-automática bebida caliente con componentes de la más alta calidad para apoyar a las cargas de trabajo pesadas

- Área de entrega de acero inoxidable
- Posible uso de hasta 24 cm jarras
- Interfaz de usuario sencilla
- Una máquina de gran alcance con un gran atractivo
- Grandes botones de selección de fácil uso y visualización sencilla
- Se puede utilizar en el modo de auto-servicio o fácilmente operado por personal no profesional

Gama Korinto

Figura 12.- Variedad de Korinto
CAPITULO III

MARCO TEORICO

Para realizar el diseño de algún componente mecánico debemos de tener las siguientes consideraciones de diseño, para garantizar que nuestro dispositivo va a funcionar para lo que fue diseñado.

Factor de seguridad, Confiabilidad, esfuerzos máximos y mínimos, deformaciones, deflexiones. Para este caso las despreciamos porque la fuerza que más impacta es la fuerza de gravedad actuando sobre el vaso, que es despreciable.

3.2 Nociones del Control

Un Sistema de Control es el conjunto de componentes interconectados de modo que puedan ser comandados, dirigidos o regulados por sí mismos o por otro sistema para lograr que las variables controladas mantengan la condición deseada. Los modos de Control más significativos son los siguientes:

- Control de Dos Posiciones (encendido o apagado)
- Control Lazo Abierto o Control Lazo Cerrado

Imagen 13 Diagrama de flujo del diseño
3.2.1 Control de Dos Posiciones (encendido o apagado)

Este modelo de control es el más simple, como su nombre lo indica la variable controlada solo puede permanecer en dos estados “encendido” o “apagado”, por su simplicidad y economía resulta ser uno de los modelos más utilizados en la industria.

3.2.2 Control Lazo Abierto

Un sistema de Control de Lazo Abierto tiene como característica principal que la salida no afecta la acción del controlador, por lo que no contamos con realimentación para ser comparada con la entrada de referencia. Este sistema depende de la correcta calibración del sistema

![Diagrama de Lazo Abierto](image)

Figura 12.- Lazo abierto

Control Lazo Cerrado

Los sistemas de Control de Lazo Cerrado también son denominados sistemas Realimentados, este modo de control alimenta al controlador con la señal de error de actuación, que es la diferencia de la señal de entrada y la señal de retroalimentación, esta última puede ser una función de la señal de salida y sus derivadas y/o integrales, esto tiene como finalidad reducir el error y contar con una salida del sistema lo más óptima posible.
3.2.3 Control Proporcional

El Control Proporcional en esencia es un amplificador con ganancia ajustable, en donde la relación entre la salida del controlador $u(t)$ y la señal de error $e(t)$ es:

$$u(t) = K_p e(t)$$

En donde K_p es la ganancia proporcional.

3.2.4 Controlador Proporcional Integral (PI)

La función del Control Proporcional Integral está definida por la siguiente ecuación:

$$u(t) = K_p e(t) + \frac{K_p}{T_i} \int_0^t e(t) dt$$

Quedando la función de transferencia de la siguiente forma

$$\frac{U(s)}{E(s)} = K_p \left[1 + \frac{1}{T_i s} \right]$$
De acuerdo a estas ecuaciones tenemos que K_p es la ganancia proporcional y T_i es el tiempo integral, K_p y T_i son ganancias ajustables.

![Figura 15.- Proporcional integral](image)

3.2.5 Controlador Proporcional Derivativo (PD)

La función del Control Proporcional Derivativo está definida por la siguiente ecuación:

$$u(t) = K_p e(t) + K_p T_d \frac{de(t)}{dt}$$

Quedando la función de transferencia de la siguiente forma

$$\frac{U(s)}{E(s)} = K_p [1 + T_d s]$$

En donde K_p es la ganancia proporcional y T_d es una constante denominada tiempo derivativo. Tanto K_p como T_d son ajustables.

![Figura 16.- Proporcional derivativo](image)
3.2.6 Control Proporcional Integral-Derivativo (PID)

Este modelo de Control cuenta con todas las ventajas de cada uno de los tres Modelos de Control anteriores, la ecuación de control PID queda definida por la siguiente ecuación:

\[u(t) = K_p e(t) + \frac{K_p}{T_i} \int_0^t e(t) dt + K_p T_d \frac{de(t)}{dt} \]

Quedando la función de transferencia de la siguiente manera:

\[\frac{U(s)}{E(s)} = K_p \left[1 + \frac{1}{T_i s} + T_d s \right] \]

Donde \(K_p \) es la ganancia proporcional, \(T_d \) es el tiempo integral, y \(T_d \) es el tiempo derivativo. El diagrama de bloques del Control PID se muestra en la figura

![Diagrama de bloques de Control PID](image)
3.3 AUTOMATIZACIÓN

Una vez que nos adentramos al concepto de la automatización la podemos definir como “Un sistema donde se trasfieren tareas de producción, realizadas habitualmente por operadores humanos a un conjunto de elementos tecnológicos que tratan de aplicar sistemas mecánicos, electrónicos y de bases computacionales para operar y controlar la producción”

Podemos definir un modelo estructural de la automatización tomando en cuenta los siguientes puntos:

- Se requiere de una ACCIÓN a realizar, por lo regular son tareas que se repiten un número indefinido de ocasiones, para lo cual una máquina normalmente se vuelve más apta para realizar este tipo de trabajos.
- Se requiere una parte de mando o CONTROL, la cual será la encargada de decidir que procesos realizar, valiéndose de sensores para mantener una parte operativa dando los resultados requeridos.
- Se debe de contar con una parte OPERATIVA, la cual se encargara de realizar diferentes procesos de fabricación utilizando maquinas o dispositivos o bien subprocesos para su realización
- Algo primordial es la fuente de ENERGÍA con la cual la parte operativa se alimentara para hacer funcionar las diferentes maquinas o dispositivos necesarios.
- Para que la parte operativa tenga una retroalimentación con la cual mida o compare los valores deseados requiere una forma de captación o lo que podemos llamar un SENSOR que puede proporcionar mediciones durante el proceso de la acción.
Como podemos observar para automatizar un sistema requerimos primordialmente de un Controlador que sea el que organice las acciones valiéndose de sensores que le reporten el estado del proceso y así poder coordinar las maquinas o actuadores que serán los que hagan posible la realización de la acción o específicamente de algún producto.

3.2.1 Actuador

Un actuador es un dispositivo capaz de transformar energía hidráulica, neumática o eléctrica en la activación de un proceso con la finalidad de generar un efecto sobre un proceso automatizado. Este recibe la orden de un regulador o controlador y en función a ella genera la orden para activar un elemento final de control como, por ejemplo, una válvula.

Existen varios tipos de actuadores como son:

- Electrónicos
- Hidráulicos
- Neumáticos
Los actuadores hidráulicos, neumáticos y eléctricos son usados para manejar aparatos mecatrónicos. Por lo general, los actuadores hidráulicos se emplean cuando lo que se necesita es potencia, y los neumáticos son simples posicionamientos. Sin embargo, los hidráulicos requieren mucho equipo para suministro de energía, así como de mantenimiento periódico.

En nuestro caso hablaremos solo de actuadores eléctricos, Además de la estructura mecánica, los servomotores serán fundamentales en el diseño del proyecto.

3.2.2 Servomotores

Un servomotor o servo es un motor de corriente continua al cual se le puede controlar su posición. Es capaz de ubicarse en cualquier posiición dentro de un rango de operación (generalmente de 180°) y mantenerse estable en dicha posición. Los servos se suelen utilizar en robótica, automática y modelismo como aviones y carros de R/C debido a su gran precisión en el posicionamiento.

Los servomotores están compuestos por 4 elementos fundamentales:

- **Motor de corriente continua**: Es el elemento que le brinda movilidad al servo. Cuando se aplica un potencial a sus dos terminales, este motor gira en un sentido a su velocidad máxima. Si el voltaje aplicado en sus dos terminales es inverso, el sentido de giro también se invierte.
- **Engranajes**: Engranes que cambian la velocidad de giro del motor para darle mayor fuerza al giro.
- **Sensor de desplazamiento**: Suele ser un potenciómetro que se encuentra colocado en el eje de la salida del motor, el cual sirve para saber el posicionamiento angular del motor.
- **Circuito de control**: Es una placa que utiliza una estrategia de control de la posición por realimentación. Para ello compara la señal de entrada de frecuencia (posición deseada) con la posición actual medida por el
potenciómetro. La diferencia entre la posición actual y la deseada es utilizada para mover el motor a la posición necesaria para eliminar el error.

Figura 19.- Partes de un servomotor.

Componentes de la figura a) Carcasa; b) motor DC; c) potenciómetro; d) circuito de control; e) engranes; f) brazo o mariposa (es el elemento terminal del servo). El servomotor se ve físicamente de la siguiente manera en la figura

Figura 20.- servomotor comercial

3.2.3 Motores a paso

Los motores paso a paso son ideales para la construcción de mecanismos en donde se requieren movimientos muy precisos.

La característica principal de estos motores es el hecho de poder moverlos un paso a la vez por cada pulso que se le aplique. Este paso puede variar desde 90° hasta pequeños movimientos de tan solo 1.8°, es decir, que se necesitarán 4
pasos en el primer caso (90°) y 200 para el segundo caso (1.8°), para completar un giro completo de 360°.

Estos motores poseen la habilidad de poder quedar enclavados en una posición o bien totalmente libres. Si una o más de sus bobinas está energizada, el motor estará enclavado en la posición correspondiente y por el contrario quedará completamente libre si no circula corriente por ninguna de sus bobinas.

En este capítulo trataremos solamente los motores P-P del tipo de imán permanente, ya que estos son los más usados en robótica.

Principio de funcionamiento:

Básicamente estos motores están constituidos normalmente por un rotor sobre el que van aplicados distintos imanes permanentes y por un cierto número de bobinas excitadoras bobinadas en su estator.

Las bobinas son parte del estator y el rotor es un imán permanente. Toda la conmutación (o excitación de las bobinas) deberá ser externamente manejada por un controlador.
Existen dos tipos de motores paso a paso de imán permanente:
Bipolar: Estos tiene generalmente cuatro cables de salida (ver figura 1). Necesitan ciertos trucos para ser controlados, debido a que requieren del cambio de dirección del flujo de corriente a través de las bobinas en la secuencia apropiada para realizar un movimiento. En figura 3 podemos apreciar un ejemplo de control de estos motores mediante el uso de un puente en H (H-Bridge). Como se aprecia, será necesario un H-Bridge por cada bobina del motor, es decir que para controlar un motor Paso a Paso de 4 cables (dos bobinas), necesitaremos usar dos H-Bridges iguales al de la figura 3. El circuito de la figura 3 es a modo ilustrativo y no corresponde con exactitud a un H-Bridge. En general es recomendable el uso de H-Bridge integrados como son los casos del L293 (ver figura 3 bis).
Figura 26.- Motor Supply

Figura 27.- Configuración de conexión para motor P-P Bipolar.
• **Unipolar:** Estos motores suelen tener 6 o 5 cables de salida, dependiendo de su conexionado interno (ver figura 2). Este tipo se caracteriza por ser más simple de controlar. En la figura podemos apreciar un ejemplo de conexionado para controlar un motor paso a paso unipolar mediante el uso de un ULN2803, el cual es una array de 8 transistores tipo Darlington capaces de manejar cargas de hasta 500mA. Las entradas de activación (Activa A, B , C y D) pueden ser directamente activadas por un microcontrolador.

![Figura 28.- configuración de conexión para un motor a pasos.](image)

Secuencias para manejar motores paso a paso Bipolares

Como se dijo anteriormente, estos motores necesitan la inversión de la corriente que circula en sus bobinas en una secuencia determinada. Cada inversión de la polaridad provoca el movimiento del eje en un paso, cuyo sentido de giro está determinado por la secuencia seguida.

A continuación se puede ver la tabla con la secuencia necesaria para controlar motores paso a paso del tipo Bipolares:
Secuencias para manejar motores paso a paso Unipolares

Existen tres secuencias posibles para este tipo de motores, las cuales se detallan a continuación. Todas las secuencias comienzan nuevamente por el paso 1 una vez alcanzado el paso final (4 u 8). Para revertir el sentido de giro, simplemente se deben ejecutar las secuencias en modo inverso.

Secuencia Normal: Esta es la secuencia más usada y la que generalmente recomienda el fabricante. Con esta secuencia el motor avanza un paso por vez y debido a que siempre hay al menos dos bobinas activadas, se obtiene un alto torque de paso y de retención.

Tabla 1.- Secuencias para un motor a pasos

<table>
<thead>
<tr>
<th>PASO</th>
<th>TERMINALES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>+V</td>
</tr>
<tr>
<td>2</td>
<td>+V</td>
</tr>
<tr>
<td>3</td>
<td>-V</td>
</tr>
<tr>
<td>4</td>
<td>-V</td>
</tr>
</tbody>
</table>

Tabla 2.- Secuencias de motor de 4 bobinas

<table>
<thead>
<tr>
<th>PASO</th>
<th>Bobina A</th>
<th>Bobina B</th>
<th>Bobina C</th>
<th>Bobina D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
</tr>
</tbody>
</table>
3.2.4 Sensores

Un sensor se define como un dispositivo diseñado para recibir o captar información con magnitudes físicas o químicas para transformarla en magnitudes eléctricas (generalmente) y así poder cuantificarla o manipularla. Los sensores normalmente están hechos con componentes pasivos los cuales cambian de estado al ser perturbados por alguna variable. Algunas de las variables que se pueden medir son la Temperatura, Presencia, Intensidad Luminosa, Movimiento, Presión, Fuerza, Desplazamiento, Distancia, Velocidad, Aceleración, etc.
<table>
<thead>
<tr>
<th>Magnitud</th>
<th>Transductor</th>
<th>Característica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desplazamiento y deformación</td>
<td>Transformer diferencial de variación lineal</td>
<td>Analógica</td>
</tr>
<tr>
<td></td>
<td>Galga extensiométrica</td>
<td>Analógica</td>
</tr>
<tr>
<td></td>
<td>Magnetostrictivos</td>
<td>A/D</td>
</tr>
<tr>
<td></td>
<td>Magnetoresistivos</td>
<td>Analógica</td>
</tr>
<tr>
<td></td>
<td>LVDT</td>
<td>Analógica</td>
</tr>
<tr>
<td></td>
<td>Dinamo tacométrica</td>
<td>Analógica</td>
</tr>
<tr>
<td></td>
<td>Encoder</td>
<td>Digital</td>
</tr>
<tr>
<td></td>
<td>Detector inductivo</td>
<td>Digital</td>
</tr>
<tr>
<td></td>
<td>Servo-inclinómetros</td>
<td>A/D</td>
</tr>
<tr>
<td></td>
<td>RVDT</td>
<td>Analógica</td>
</tr>
<tr>
<td></td>
<td>Giroscopos</td>
<td></td>
</tr>
<tr>
<td>Velocidad lineal y angular</td>
<td>Acelerómetro</td>
<td>Analógico</td>
</tr>
<tr>
<td></td>
<td>Servo-acelerómetros</td>
<td>Analógico</td>
</tr>
<tr>
<td></td>
<td>Galga extensiométrica</td>
<td>Analógico</td>
</tr>
<tr>
<td></td>
<td>Tritoxiales</td>
<td>A/D</td>
</tr>
<tr>
<td></td>
<td>Membranas</td>
<td>Analógica</td>
</tr>
<tr>
<td></td>
<td>Piezoeléctricos</td>
<td>Analógica</td>
</tr>
<tr>
<td></td>
<td>Manómetros Digitales</td>
<td>Digital</td>
</tr>
<tr>
<td>Presión</td>
<td>Termopar</td>
<td>Analógica</td>
</tr>
<tr>
<td></td>
<td>RTD</td>
<td>Analógica</td>
</tr>
<tr>
<td></td>
<td>Termistor NTC</td>
<td>Analógica</td>
</tr>
<tr>
<td></td>
<td>Termistor PTC</td>
<td>Analógica</td>
</tr>
<tr>
<td></td>
<td>[Bimetal - Termostato]</td>
<td>U0</td>
</tr>
<tr>
<td>Temperatura</td>
<td>Inductivos</td>
<td>U0</td>
</tr>
<tr>
<td></td>
<td>Capacitivos</td>
<td>U0</td>
</tr>
<tr>
<td></td>
<td>Ópticos</td>
<td>U0 y Analógica</td>
</tr>
<tr>
<td>Sensores de presencia</td>
<td>Fotodiodo</td>
<td>Analógica</td>
</tr>
<tr>
<td></td>
<td>Fotorresistencia</td>
<td>Analógica</td>
</tr>
<tr>
<td></td>
<td>Fototransistor</td>
<td>Analógica</td>
</tr>
<tr>
<td></td>
<td>Célula fotoeléctrica</td>
<td>Analógica</td>
</tr>
</tbody>
</table>

Figura 29.- Tipos de sensores.
En nuestro caso nos basaremos en los sensores de presencia, teniendo en cuenta los límites de carrera.

3.2.5 Sensor final de carrera

Dentro de los componentes electrónicos, se encuentra el final de carrera o sensor de contacto (también conocido como "interruptor de límite"), son dispositivos eléctricos, neumáticos o mecánicos situados al final del recorrido o de un elemento móvil, como por ejemplo una cinta transportadora, con el objetivo de enviar señales que puedan modificar el estado de un circuito.

Internamente pueden contener interruptores normalmente abiertos (NA), cerrados (NC) o conmutadores dependiendo de la operación que cumplan al ser accionados, de ahí la gran variedad de finales de carrera que existen en mercado.

Los finales de carrera están fabricados en diferentes materiales tales como metal, plástico o fibra de vidrio.

Funcionamiento:

Estos sensores tienen dos tipos de funcionamiento: modo positivo y modo negativo.

En el modo positivo el sensor se activa cuando el elemento a controlar tiene una tarea que hace que el eje se eleve y se conecte con el objeto móvil con el contacto
NC (normal cerrado). Cuando el muelle (resorte de presión) se rompe el sensor se queda desconectado.

El modo negativo es la inversa del modo anterior, cuando el objeto controlado tiene un saliente que empuje el eje hacia abajo, forzando el resorte de copa y haciendo que se cierre el circuito.

Entre las ventajas encontramos la facilidad en la instalación, la robustez del sistema, es insensible a estados transitorios, trabaja a tensiones altas, debido a la inexistencia de imanes es inmune a la electricidad estática.

Los inconvenientes de este dispositivo son la velocidad de detección y la posibilidad de rebotes en el contacto, además depende de la fuerza de actuación.

3.2.6 SISTEMAS MECANICOS

Los sistemas mecánicos son aquellos sistemas constituidos fundamentalmente por componentes, dispositivos o elementos que tienen como función específica transformar o transmitir el movimiento desde las fuentes que lo generan, al transformar distintos tipos de energía.

CARACTERISTICAS DE LOS SISTEMAS MECANICOS

Se caracterizan por presentar elementos o piezas sólidos, con el objeto de realizar movimientos por acción o efecto de una fuerza.

En ocasiones, pueden asociarse con sistemas eléctricos y producir movimiento a partir de un motor accionado por la energía eléctrica.

En general la mayor cantidad de sistemas mecánicos usados actualmente son propulsados por motores de combustión interna.

En los sistemas mecánicos. Se utilizan distintos elementos relacionados para transmitir un movimiento.
Como el movimiento tiene una intensidad y una dirección, en ocasiones es necesario cambiar esa dirección y/o aumentar la intensidad, y para ello se utilizan mecanismos.

En general el sentido de movimiento puede ser circular (movimiento de rotación) o lineal (movimiento de translación) los motores tienen un eje que genera un movimiento circular

3.2.7 Mecanismos

El proceso de diseño de un mecanismo o máquina se puede dividir en dos partes: Síntesis y análisis. En el proceso de síntesis, se diseña un mecanismo o máquina que sea capaz de realizar el trabajo deseado, de forma aproximada. En el proceso de análisis se calculan posiciones, desplazamientos, velocidades, aceleraciones y fuerzas que aparecerán en las diferentes piezas que componen el mecanismo o máquina y se comprueba si los movimientos son los previstos, y si las dimensiones prefijadas son las adecuadas para soportar los esfuerzos a que se verán sometidas las piezas. Caso de no ser así, se vuelve a rediseñar y analizar en un proceso iterativo, hasta lograr un diseño de mecanismo o máquina que realice los movimientos previstos y esté correctamente dimensionado.

Máquina, combinación de cuerpos resistentes de tal manera que por medio de ellos, las fuerzas mecánicas de la naturaleza se pueden encauzar para realizar un trabajo acompañado de movimientos determinados. (Ejemplo, motor de explosión).

Mecanismo, combinación de cuerpos resistentes conectados por medio de articulaciones móviles para formar una cadena cinemática cerrada con un eslabón fijo y cuyo propósito es transformar el movimiento. (Ejemplo, mecanismo pistón-biela-manivela). Existe cierta relación entre estructura y estática, mecanismo y cinemática y máquina y dinámica.
3.2.8 SISTEMA BIELA MANIVELA CORREDERA

Este sistema es un mecanismo capaz de transformar el movimiento circular en movimiento alternativo. Dicho sistema está formado por un elemento giratorio denominado manivela que va conectado con una barra rígida llamada biela, al girar la manivela, la biela se ve obligada a retroceder y avanzar, produciendo un movimiento alternativo.

![Diagrama de biela manivela corredera](image)

Este tipo de mecanismo trata de transformar movimientos y así por medio de este método poder llegar a transformarlo en trabajo,

3.2.9 LA PALANCA

Una palanca es una barra rígida que puede girar sobre un punto o eje denominado fulcro o punto de apoyo. La característica principal de una palanca es que puede girar sobre el fulcro y se mueve bajo la influencia de una fuerza aplicada y una fuerza resistente o carga.

- **Primer género o especie**: Las fuerzas se sitúan en ambos extremos de la barra, separadas por el fulcro. La ventaja mecánica depende de los
"brazos" de la palanca. Si el brazo de potencia es mayor que el brazo de resistencia, entonces tiene ventaja mecánica.

- **Segundo género o especie**: El fulcro está en un extremo de la palanca y la "potencia" en el otro. Siempre presenta ventaja mecánica mayor que la unidad.

- **Tercer género o especie**: El fulcro está en un extremo de la palanca y la fuerza resistente o "resistencia" se sitúa en el otro extremo. Este tipo de palanca no presenta ventaja mecánica pero a cambio conseguimos una ventaja de desplazamiento. Con un pequeño movimiento (giro) aplicado en la "potencia" conseguimos un movimiento mayor (giro) en la "resistencia".

Figura 32.- Tipos de palanca
CAPITULO IV

METODOLOGÍA

La información que se tiene sobre este tipo de dispositivos es muy reservada por parte de los fabricantes de estos equipos, haremos una propuesta inicial la cual está basada en el dispositivo monoartantes descrito con ciertas adecuaciones.

Para comenzar tomaremos el diseño particular del vaso que el equipo utiliza como modelo para realizar nuestro prototipo.

Para obtener esas dimensiones, fue necesario el uso de herramienta de precisión (Vernier).

Figura 33.- Planos del vaso 1

El modelo se ha de adaptar a las dimensiones del vaso.
Como se mencionó el dispositivo quedará de lado de la siguiente manera.

Empezamos por la parte mecánica del dispositivo que es la estructura y componentes mecánicos.

Por lo regular los dispositivos despachadores de vasos utilizan dos actuadores para llevar a cabo el proceso, el actuador número uno se encarga de detener a todos los vasos para evitar que se caigan, mientras el actuador número dos está inactivo.
Figura 35.- Despachador de vasos diseño 1

El algoritmo es el siguiente:

1.- Actuador uno activo deteniendo todos los vasos.

2.- Actuador dos activo detiene el penúltimo vaso, actuador uno se desactiva y un vaso es liberado.

En este caso para el dispositivo que se está diseñando, se pretende que use solamente un actuador, para disminuir el tamaño del dispositivo.

Los elementos usados en equipos son pequeños topes que evitan que los vasos caigan.

Para nuestro dispositivo se usarán elementos que tengan mayor contacto con los vasos para evitar cualquier anomalía durante el proceso.
El primer paso será diseñar el elemento donde han de alojarse los vasos, se optó por un elemento cilíndrico adecuado a las medidas del vaso.

Figura 36.- Recipiente que contendrán los vasos

Este contenedor servirá para alojar a los vasos del equipo.

Nuestras dimensiones fueron hechas en base a las medidas del vaso, de tal forma que estos queden al interior sin tener demasiado juego entre la distancia del tubo y el vaso, dejando una holgura de 2 mm entre los vasos y la pared acrílica.
Figura 37.- Base de soporte.

Posteriormente se realizó una base para poder soportar al cilindro contenedor de vasos, el tubo acrílico de vasos tiene un detalle que sirve para poder sujetarse a la base soporte que se menciona arriba.

Como mencionamos al principio usaremos el principio de 2 actuadores para poder realizar el despacho de vasos.

Para el diseño del actuador se optó que fuera de forma circular para tener mayor área de contacto con el vaso.
La pieza en forma de gancho es el eslabón que realiza el detenido y separado de vasos.

Al aplicar movimiento en 1, 2 avanza y 3 retrocede, y por gravedad el vaso cae.
Se realizaron los diseños del soporte para que el dispensador quede a los costados y encontré que después de realizar el mecanismo despachador automáticos de vasos, sería necesario un segundo mecanismo que transporte los vasos hacia la posición de llenado de vasos, haciendo a nuestro dispositivo más complejo, con más piezas y elevando el costo.

El mecanismo que se diseñó tiene varias partes móviles las cuales requieren estén precisamente colocadas y ensambladas, eso hizo que el volumen del accesorio ocupara demasiado espacio.

En el afán de querer reducir piezas optamos por la decisión que nuestro mecanismo debe ir al interior del compartimento de la máquina, para ello recurrimos a la observación del interior del equipo para poder sin perjudicar a ninguna pieza introducir nuestro alojamiento de vasos.
Lo que prosiguió fue que en base a las medidas obtenidas se diseñó otro modelo parecido al anterior, cambiando la forma de la estructura que soportaba al alojamiento de vasos, para poder quedar en el interior del equipo.

Algoritmo del mecanismo.

Vasos en el alojamiento, mecanismo en posición inicial, los vasos no caen porque la compuerta 1 está cerrada y los ductos dispensadores de producto están en posición de verter.

1.- Se activa servo 1 la palanca liberadora de compuerta 1 se abre y la compuerta cuña 2 se cierra, liberando al vaso que se encuentra en la parte inferior, ductos dispensadores se retiras para dejar libre el paso del vaso.

2.- Por programación el mecanismo vuelve a su posición original, la compuerta 2 se cierra dejando caer a todos los vasos, pero la compuerta 1 se cierra evitando que estos caigan fuera del dispensador, ductos dispensadores, vuelven a su posición inicial.

Cada que el mecanismo se activa en un ciclo, deja caer un vaso a la vez.

Lógica de control electrónico

Para explicar el funcionamiento actual del equipo presentamos el siguiente algoritmo:

Puede seleccionar cualquiera de los 8 botones.

1.- Presiona botón

2.- Dependiendo del botón seleccionado, el equipo en su configuración hace la mezcla de las distintas recetas que tiene programada.
Con la introducción del dispositivo se agregan XXXX número de pasos entre los pasos XXX y YYY.

1.- Presiona el botón del sabor que desee.

2.- La señal va hacia nuestro Arduino como un pulso positivo.

3.- Arduino recibe el pulso, enviando a activar el servo motor que acciona la corredera.

4.- El mecanismo deja caer el vaso y vuelve a su posición original por delay de avance y retardo de arduino.

5.- Una señal llega a Arduino indicando que el vaso está en posición para verter el producto.

6.- Al recibir esta señal, arduino cierra Switch del sabor seleccionado, reanudando el proceso original.

7.- Si arduino no recibe la señal de que el vaso está en posición, el proceso se detiene.
Propuesta

Se propone un dispensador de vasos, con un actuador redondo que cumpla las funciones de despachar un vaso a la vez.

![Figura 41 Propuesta de diseño](image)

Hipótesis

La rueda dentada será la encargada de suministrar vasos accionada mediante un motor a pasos que controle los grados que esta se debe mover para liberar un vaso la forma está basada en la teoría del diseño de levas, se debe de considerar las fuerzas necesarias que se necesita para que un vaso se separe de otro rompiendo la resistencia que se presenta por la fricción entre vasos.

Para el diseño de esta rueda se toma en consideración la distancia entre vasos al estar uno sobre otro
Es importante encontrar la relación entre la distancia \(d \) y la longitud de arco que tendrá la rueda para poder realizar la separación de los vasos, tenemos que:

\[
S = r \theta
\]

Donde:

- \(S \): longitud de arco
- \(R \): radio del círculo
- \(\theta \): Ángulo

Para el diseño del distribuidor tenemos como incógnita el radio, ya que sabemos que la longitud de arco debe ser: \(S < 9 \) y proporciono un ángulo de \(22.5^\circ \)

Consideramos que \(\theta \) está en radianes para convertir de radianes a grados hacemos la siguiente conversión:

\[
180 = \pi; \quad \frac{22.5 \times \pi}{180} = 0.39269 \text{rad}
\]
Despejamos \(r = \frac{s}{\theta} = \frac{12\text{mm}}{0.39269} = 30.55\text{mm} \)

Ahora que tenemos las medidas de nuestro distribuidores hacemos un análisis de fuerzas, y analizamos las distancias a las que debe ser ensamblado.

Posteriormente haremos análisis de fuerza.

Figura 43 Fuerzas que actuan sobre el vaso

Figura 46 Distribución de fuerzas

Dónde:
F1: Fuerza que ejerce el distribuidor sobre el vaso a 45° de la vertical.
F2: Fuerza que ejerce la
CONTROL

Arduino fue inventado en el año 2005 por el entonces estudiante del instituto IVRAE Massimo Banzi, quien, en un principio, pensaba en hacer Arduino por una necesidad de aprendizaje para los estudiantes de computación y electrónica del mismo instituto, ya que en ese entonces, adquirir una placa de micro controladores eran bastante caro y no ofrecían el soporte adecuado; no obstante, nunca se imaginó que esta herramienta se llegaría a convertir en años más adelante en el líder mundial de tecnologías DIY (Do It Yourself). Inicialmente fue un proyecto creado no solo para economizar la creación de proyectos escolares dentro del instituto, si no que además, Banzi tenía la intención de ayudar a su escuela a evitar la quiebra de la misma con las ganancias que produciría vendiendo sus placas dentro del campus a un precio accesible (1 euro por unidad).

El primer prototipo de Arduino fue fabricado en el instituto IVRAE. Inicialmente estaba basado en una simple placa de circuitos eléctricos, donde estaban conectados un micro controlador simple junto con resistencias de voltaje, además de que únicamente podían conectarse sensores simples como leds u otras resistencias, y es más, aún no contaba con el soporte de algún lenguaje de programación para manipularla.

Años más tarde, se integró al equipo de Arduino Hernando Barragán, un estudiante de la Universidad de Colombia que se encontraba haciendo su tesis, y tras enterarse de este proyecto, contribuyó al desarrollo de un entorno para la programación del procesador de esta placa: Wiring, en colaboración con David Mellis, otro integrante del mismo instituto que Banzi, quien más adelante, mejoraría la interfaz de software.

Tiempo después, se integro al "Team Arduino" el estudiante español David Cuartielles, experto en circuitos y computadoras, quien ayudó Banzi a mejorar la interfaz de hardware de esta placa, agregando los micro controladores necesarios para brindar soporte y memoria al lenguaje de programación para manipular esta
plataforma.
Más tarde, Tom Igoe, un estudiante de Estados Unidos que se encontraba haciendo su tesis, escuchó que se estaba trabajando en una plataforma de open-source basada en una placa de micro controladores pre ensamblada. Después se interesó en el proyecto y fue a visitar las instalaciones del Instituto IVRAE para averiguar en que estaban trabajando. Tras regresar a su país natal, recibió un e-mail donde el mismo Massimo Banzi invitó a Igoe a participar con su equipo para ayudar a mejorar Arduino. Aceptó la invitación y ayudó a mejorar la placa haciéndola más potente, agregando puertos USB para poder conectarla a un ordenador. Además, el le sugirió a Banzi la distribución de este proyecto a nivel mundial.

Cuando creyeron que la placa estaba al fin lista, comenzaron su distribución de manera gratuita dentro de las facultades de electrónica, computación y diseño del mismo instituto. Para poder promocionar el proyecto Arduino dentro del campus, tuvieron que consultar con un publicista que más parte pasaría a formar parte del equipo Arduino: Gianluca Martino, quien la distribuyó dentro del instituto y promocionándola a algunos conocidos y amigos suyos. Al ver su gran aceptación por parte de los alumnos y maestros y tomando en cuenta el consejo de Igoe, pensaron en su distribución nivel mundial, para lo cual contactaron a un amigo y socio de Banzi, Natan Sadle, quien se ofreció a producir en masa las placas tras interesarse en el proyecto.

Un breve tiempo más tarde, al ver los grandes resultados que tuvo Arduino y las grandes aceptaciones que tuvo por parte del público, comenzó a distribuirse en Italia, después en España, hasta colocarse en el número uno de herramientas de aprendizaje para el desarrollo de sistemas autómatas, siendo además muy económica (300-500 pesos) en comparación con otras placas de micro controladores (800 pesos en adelante).
Tipos de Arduino

Arduino cuenta con varios prototipos y modelos de placas a elegir, dependiendo de que tan grande es uso que le demos a esta. Cada una con características particulares y diferentes que las diferencian de las demás. Aquí se mencionan algunas de las más populares junto con sus características.

Duemilanove (UNO)

El Arduino Duemilanove ("2009") es una placa con microcontrolador basada en el ATmega168 (datasheet) o el ATmega328 (datasheet),. Tiene 14 pines con entradas/salidas digitales (6 de las cuales pueden ser usadas como salidas PWM), 6 entradas analógicas, un cristal oscilador a 16Mhz, conexión USB, entrada de alimentación, una cabecera ISCP, y un botón de reset. Contiene todo lo necesario para utilizar el microcontrolador; simplemente conectalo a tu ordenador a través del cable USB o aliméntalo con un transformador o una batería para empezar a trabajar con él.

El Arduino Duemilanove puede ser alimentado vía la conexión USB o con una fuente de alimentación externa. El origen de la alimentación se selecciona automáticamente. Las fuentes de alimentación externas (no-USB) pueden ser tanto un transformador o una batería. La placa puede trabajar con una alimentación externa de entre 6 a 20 voltios. Si el voltaje suministrado es inferior a
7V el pin de 5V puede proporcionar menos de 5 Voltios y la placa puede volverse inestable, si se usan más de 12V los reguladores de voltaje se pueden sobrecalentar y dañar la placa. El rango recomendado es de 7 a 12 voltios.

Mega

El Arduino Mega es una placa microcontrolador basada ATmeg1280 (datasheet). Tiene 54 entradas/salidas digitales (de las cuales 14 proporcionan salida PWM), 16 entradas digitales, 4 UARTs (puertos serie por hardware), un cristal oscilador de 16MHz, conexión USB, entrada de corriente, conector ICSP y botón de reset. Contiene todo lo necesario para hacer funcionar el microcontrolador; simplemente conectalo al ordenador con el cable USB o alimentalo con un transformador o batería para empezar.
Nano

El Arduino Nano es una pequeña y completa placa basada en el ATmega328 (Arduino Nano 3.0) o ATmega168 (Arduino Nano 2.x) que se usa conectándola a una protoboard. Tiene más o menos la misma funcionalidad que el Arduino Duemilanove, pero con una presentación diferente. No posee conector para alimentación externa, y funciona con un cable USB Mini-B en vez de el cable estándar. El nano fue diseñado y está siendo producido por Gravitech.
La Arduino pro es una placa con un microcontrolador ATmega168 (datasheet) o en el ATmega328(datasheet). La Pro viene en versiones de 3.3v / 8 MHz y 5v / 16 MHz. Tiene 14 E/S digitales (6 de las cuales se pueden utilizar como salidas PWM), 6 entradas analógicas, un resonador interno, botón de reseteo y agujeros para el montaje de tiras de pines. Vienen equipada con 6 pines para la conexión a un cable FTDI o a una placa adaptadora de la casa Sparkfun para dotarla de Comunicación USB y alimentación.

La Arduino Mini Pro está destinada a instalaciones semi-permanentes en objetos o demostraciones. La placa viene sin conectores montados, permitiendo el uso de varios tipos de conectores o soldado directo de cables según las necesidades de cada proyecto en particular. La distribución de los pines es compatible con los shields de Arduino. Las versiones de 3.3v de la pro pueden ser alimentadas por baterías.
CIRCUITO

Para la parte de control de nuestro sistema, lo dividiremos en componentes para hacerlo de fácil comprensión iniciando por el componente donde se ha de iniciar el proceso, hablo del botón de selección de bebida.

Al pulsar un botón de los 8 con que cuenta el equipo, la tarjeta según sus configuraciones realiza las combinaciones necesarias para obtener la bebida deseada.

En este caso alteraremos es proceso, al presionar el botón del sabor de bebida que hayamos seleccionado, este activará el proceso de despacho del vaso, al finalizar ese proceso se enviará una señal que el proceso a terminado y activará un relevador que será como si el cliente estuviera pulsando el botón de despacho de bebida.

Figura 51 Circuito eléctrico
El diseño del circuito está compuesto de:

5 resistencias de 10Kohms
4 sensores mecánicos (limitswitch)
1 botón pulsador
1 motor a paso de dos polos
2 relevadores de 5 volts
1 motor continuo
1 LED rojo
1 resistencia de 400 ohms
#include <Stepper.h> // incluimos la librería del motor a pasos

//Determinamos abreviaciones para las variables...

const int pasosporvaso = 12.5;
const int pasosoff = 0;

Stepper myStepper(pasosporvaso, 8,9,10,11);

//Pines sensores mecánicos

int S1=2; //Sensor que indica que el botón para servirse ha sido presionado
int S2=3; //Sensor que indica si hay vasos listos para llenar
int S3=4; //Sensor que indica si el contenedor tiene vasos
int S4=5; //Sensor que indica que el motor llegó a su límite de carrera para reposar
int S5=6; //Sensor que indica que el motor llegó a su límite de carrera para despachar

//valores de las salidas a motores

int PD=7; //Avanza para despachar
int RR=12; //Retrocede para reposar
int Sal=13; //Señal de salida que el proceso de despachar vasos fue concluido con éxito
int Averia=1; //Señal de salida que el proceso de despachar vasos fue concluido con éxito
//valores de los sensores(LECTURA DIGITAL)

int valS1=0;
int valS2=0;
int valS3=0;
int valS4=0;
int valS5=0;

void setup()
{
 // set the speed at 60 rpm:
 myStepper.setSpeed(60);

 // initialize the serial port:
 Serial.begin(9600);

 pinMode(S1, INPUT);
 pinMode(S2, INPUT);
 pinMode(S3, INPUT);
 pinMode(S4, INPUT);
 pinMode(S5, INPUT);
 pinMode(PD, OUTPUT); //activa motores hacia adelante
 pinMode(RR, OUTPUT); //activa motores hacia atrás
 pinMode(Sal, OUTPUT); //Señal de Salida conclusión de proceso
 pinMode(Averia, OUTPUT); //Señal que indica fallo en sistema de despacho de vasos
void loop()
{

 // valores de sensores
 valS1 = digitalRead(S1); // esto varía en función de la lectura de S1 pin 2
 valS2 = digitalRead(S2); // esto varía en función de la lectura de S2 pin 3
 valS3 = digitalRead(S3); // esto varía en función de la lectura de S3 pin 4
 valS4 = digitalRead(S4); // esto varía en función de la lectura de S4 pin 5
 valS5 = digitalRead(S5); // esto varía en función de la lectura de S4 pin 6

 // condiciones para activar funciones
 // posibilidades
 // Primera opción
 if ((valS1 == 0) && (valS2 == 0) && (valS3 == 0) && (valS4 == 0) && (valS5 == 0))
 {
 digitalWrite(PD, LOW); //
 digitalWrite(RR, HIGH);
 digitalWrite(Sal, LOW);
 digitalWrite(Averia, LOW);
 }

 digitalWrite(PD, LOW); //
 digitalWrite(RR, HIGH);
 digitalWrite(Sal, LOW);
 digitalWrite(Averia, LOW);
// Serial.print("clockwise");
//myStepper.step(pasosPorVaso);
//delay(500);
// Serial.print("counterclockwise");
//myStepper.step(-stepsPerRevolution);
//delay(500);

}

// segunda opción
if ((valS1 == 0) && (valS2 == 0) && (valS3 == 1) && (valS4 == 0) && (valS5 == 0))
// En esta lectura detecta que hay vasos en el portavasos pero lee que el despachador de bebida
// no está en reposo
// manda a la posición de reposo al despachador de bebida
{

digitalWrite(PD, LOW); //
digitalWrite(RR, HIGH);
digitalWrite(Sal, LOW);
digitalWrite(Averia, LOW);
// Serial.print("clockwise");
//myStepper.step(pasosPorVaso);
//delay(500);
// Serial.print("counterclockwise");
//myStepper.step(-stepsPerRevolution);
//delay(500);
if ((valS1 == 0) && (valS2 == 0) && (valS3 == 1) && (valS4 == 1) && (valS5 == 0))

// En esta lectura detecta que hay vasos en el portavasos pero no tiene ninguna señal de activación por eso no realiza alguna acción

// y el despachador de bebida se encuentra en posición de reposo

{.digitalWrite(PD, LOW); //
digitalWrite(RR, LOW);
digitalWrite(Sal, LOW);
digitalWrite(Averia, LOW);

// Serial.println("clockwise");
// myStepper.step(pasosporvaso);
// delay(500);

// Serial.println("counterclockwise");
// myStepper.step(-stepsPerRevolution);
// delay(500);

}

// Cuarta opción
if ((valS1 == 0) && (valS2 == 0) && (valS3 == 0) && (valS4 == 1) && (valS5 == 0))

// En esta lectura detecta que no hay vasos en el portavasos no realiza alguna acción

// y el despachador de bebida se encuentra en posición de reposo
{ }

digitalWrite(PD, LOW); //
digitalWrite(RR, LOW);
digitalWrite(Sal, LOW);
digitalWrite(Averia, LOW);

// Serial.println("clockwise");
// myStepper.step(pasosporvaso);
// delay(500);
// Serial.println("counterclockwise");
// myStepper.step(-stepsPerRevolution);
// delay(500);

}

// Quinta opción
if ((valS1 == 1) && (valS2 == 0) && (valS3 == 1) && (valS4 == 1) && (valS5 == 0))

// En esta lectura detecta que hay vasos en el portavasos realiza alguna acción
// y el despachador de bebida se encuentra en posición de reposo
// y el botón para despachar la bebida fue opimido
// Activa el motor a pasos para dejar caer un vaso

{ }

digitalWrite(PD, LOW); //
digitalWrite(RR, LOW);
digitalWrite(Sal, LOW);
digitalWrite(Averia,LOW);
Serial.println("clockwise");
myStepper.step(pasosporvaso);
delay(500);
 // Serial.println("counterclockwise");
 //myStepper.step(-stepsPerRevolution);
 //delay(500);
}
//Sextaopción
if((valS1 ==0)&&(valS2==1)&&(valS3==1)&&(valS4==1)&&(valS5==0))
 //En esta lectura detecta que hay vasos en el portavasos
 //y el despachador de bebida se encuentra en posición de reposo
 //y el botón de que hay un vaso para ser llenado fue activado
 //Activa el motor a posición de despachar producto
{

digitalWrite(PD,HIGH); //
digitalWrite(RR,LOW);
digitalWrite(Sal,LOW);
digitalWrite(Averia,LOW);
//Serial.println("clockwise");
 //myStepper.step(pasosporvaso);
 //delay(500);
 // Serial.println("counterclockwise");
//myStepper.step(-stepsPerRevolution);
//delay(500);

}

//Octavaopción
if((valS1 ==1)&&(valS2==1)&&(valS3==1)&&(valS4==1)&&(valS5==0))
//En esta lectura detecta que hay vasos en el portavasos
//y el despachador de bebida se encuentra en posición de reposo
//y el botón de que hay un vaso para ser llenado fue activado
//y el botón de la máquina fue oprimido ya iniciado el proceso, anula todo proceso
//Activa el motor a posición de despachar producto

{
 digitalWrite(PD,LOW); //
 digitalWrite(RR,LOW);
 digitalWrite(Sal,LOW);
 digitalWrite(Averia,LOW);
 //Serial.println("clockwise");
 //myStepper.step(pasosporvaso);
 //delay(500);
 // Serial.println("counterclockwise");
 //myStepper.step(-stepsPerRevolution);
 //delay(500);

}
//Novena opción
if ((valS1 ==0)&&(valS2==1)&&(valS3==1)&&(valS4==0)&&(valS5==1))
//En esta lectura detecta que hay vasos en el portavasos
//y el despachador de bebida se encuentra en posición de reposo
//y el botón de que hay un vaso para ser llenado fue activado
//Activa el motor a posición de despachar producto
{

digitalWrite(PD,LOW); //
digitalWrite(RR,LOW);
digitalWrite(Sal,HIGH);
digitalWrite(Averia,LOW);//Listo para que inicie secuencia de despacho de bebida
//Serial.println("clockwise");
 //myStepper.step(pasosporvaso);
 //delay(500);
 // Serial.println("counterclockwise");
 //myStepper.step(-stepsPerRevolution);
 //delay(500);

}

//Décima opción ERROR
if ((valS1 ==0)&&(valS2==1)&&(valS3==1)&&(valS4==1)&&(valS5==1))
//El error se activará cuando los dos sensores de posición del despachador de bebida estén activados
{

digitalWrite(PD, LOW); //
digitalWrite(RR, LOW);
digitalWrite(Sal, LOW);
digitalWrite(Averia, HIGH);//Listo para que inicie secuencia de despacho de bebida

//Serial.println("clockwise");
//myStepper.step(pasosporvaso);
//delay(500);
// Serial.println("counterclockwise");
//myStepper.step(-stepsPerRevolution);
//delay(500);
BIBLIOGRAFÍA

