INSTITUTO TECNOLÓGICO DE TUXTLA GUTIÉRREZ

DEPARTAMENTO DE METAL-MECÁNICA

INFORME TÉCNICO DE RESIDENCIA PROFESIONAL

"DISEÑO MECÁNICO DE ESTACIÓN PARA INSPECCIÓN ÓPTICO AUTOMÁTICO DE PINES, PARA MÓDULOS DE CONTROL DE CARROCERÍA (BCM), DE MERCEDES-BENZ PARA LA EMPRESA HELLA AUTOMOTIVE MEXICO".

PRESENTA:

Alexis Hidalgo Aguilar

CARRERA:

Ingeniería mecánica

ASESOR INTERNO:

ING. José Manuel Rasgado Besares

ASESOR EXTERNO:

ING. Iñaki Gruceta Otuduy

PERIODO:

Enero – junio 2016

Santiago de Querétaro, 27 de junio del 2016.

ÍNDICE

Glos	osario	l
Índi	ice de figuras	
Índi	ice de tablas	III
Res	sumen	IV
Abs	strack	V
Intro	oduccion	VI
INTF	RODUCCION	13
CAP	PITULO I	14
M	farco de referencia	14
1.	.1 Antecedentes	15
1	.2 Planteamiento del problema	25
1.	.3 Justificación	26
1.	.4 Objetivos	27
1.	.4.1 Objetivos generales	27
1.	.4.2 Objetivos específicos	27
1.	.5 Alcances y limitaciones	27
Αl	lcances	27
Lii	imitaciones	28
CAP	PITULO II	29
MAF	RCO TEORICO	29
2.	.1 Características de los elementos físicos	30
2.	. Anillo de luz	32
3.	. Sensores optoelectrónicos	33
•	BALLUFF BOS 0100	33
•	BALLUFF BOS 0109	35
•	BALLUFF BOS 01JK	37
4.	. Sistema de visión COGNEX IN-SIGHT MICRO	39
5.	. Lector de códigos 2D KEYENCE SR-752	41

	6.	Indicador de luz multicolor marca BANNER	44
	7.	Sensor de proximidad FESTO SIES-8M-PS-24V-K-7,5-OE	45
	8.	Distribuidor marca BALLUFF para conexión de sensores	46
	9.	Pórtico con dos ejes de movimiento marca FESTO	48
	10.	Panel móvil HMI marca SIEMENS	51
	11.	Torre de luz: 4-color BANNER TL50	52
	12.	Sensor de presión FESTO	53
	13.	Cortinas de seguridad BANNER	55
	14.	Botón táctil óptico BANNER VTBP6BLQ	56
	15.	Enclavamiento de solenoide SCHMERSAL SERIE AMZ	58
	16.	Armarios compactos AE 1055.500	61
	17.	BALLUFF BNI PBS-502-001-Z001	62
	18.	MANIFOLD FESTO_34P-LK-U4A-K3L	64
	19.	Unidad de mantenimiento FESTO MSB4	66
	20.	Sujetador BOSCH para perfil 45x45l	68
	21.	Perfilaría de aluminio BOSCH 45X45	69
	22.	Perfilaría de aluminio BOSCH 45x90	69
	23.	Bujes de posicionamiento MISUMI JBH6-8	70
	24.	Plugger MISUMI BLPS6-25	71
	25.	- Manijas / offset MISUMI (UHFNS66)	73
	26.	Cilindro FESTO STA-20-15-PA.	74
С	APÍT	ULO III	75
M	letod	ología de análisis	75
	3.1 l	Documentación del proyecto	76
	1.	Ensamble general de la maquina	76
	2.	Estructura de la maquina	76
	3.	Unidad de mantenimiento	79
	4.	Piezas no ok	80
	5.	Iluminación interna de la maquina	81
	6.	Sensor de caudal	81
	7.	Sistema de alamar visual	82
	8.	Sistema de seguridad operador-maquina	. 82

,	9.	Sistema de bloqueo para ventana de mantenimiento	83
	10.	Botón táctil de inicio de ciclo	84
	11.	Botones de ciclo	84
	12.	Panel control táctil HMI	85
	13.	Ventana para mantenimiento	86
	14.	Sistema auxiliar de verificación	86
	15.	Ensamble general del sistema de verificación	88
	16.	Placa base y montaje de gantry	90
	17.	Integración de escáner y alarma de luz	90
	18.	Sistema de visión e iluminación para verificación de pines	91
	19.	Sensor de presencia de producto	91
:	20.	Sensor optoeléctrico para correcta colocación del producto	92
:	21.	Herramental para colocación del producto	92
CA	PIT	ULO IV	96
An	ális	is de resultados	96
CA	PIT	ULO V	98
Ma	arco	referencial	98
5.′	l De	escripción de la empresa u organización	99
5.′	1.1 /	Antecedentes de la empresa	99
5.′	1.2 1	Misión	99
5.′	1.3 \	Visión	99
5.′	1.4 \	Valores	99
5.′	1.5 F	Política de calidad	100
5.′	1.6 (Organigrama y lay out	100
Or	gan	igrama	100
La	y ou	ıt	102
5.7	7 Ca	ampo de desarrollo nacional	104
		oceso general de producción	
CC	ONC	CLUSIÓN	105
An	exo	s	106
•	14	400-1105-0-005	109
•	14	400-1105-0-007	110

•	1400-1105-0-008	. 110
•	1400-1105-0-009	. 111
•	1400-1105-0-010	. 111
•	1400-1105-0-011	. 112
•	1400-1105-0-012	. 112
•	1400-1105-0-013	. 113
•	1400-1105-0-014	. 113
•	1400-1105-0-015	. 114
•	1400-1105-0-016	. 114
•	1400-1105-0-017	. 115
•	1400-1105-0-018	. 115
•	1400-1105-0-019	. 116
•	1400-1105-0-020	. 116
•	1400-1105-0-022	. 117
•	1400-1105-0-023	. 117
•	1400-1105-0-024	. 118
•	1400-1105-0-025	. 118
•	1400-1105-0-026	. 119
•	1400-1105-0-027	. 119
•	1400-1105-0-028	. 120
•	1400-1105-0-029	. 120
•	1400-1105-0-030	. 121
•	1400-1105-0-031	. 121
•	1400-1105-0-034	. 122
•	1400-1105-0-035	. 122
•	1400-1105-0-036	. 123
•	1400-1105-0-037	. 123
•	1400-1105-0-040	. 124
•	1400-1105-0-041	. 124
•	1400-1105-0-042	. 125
•	1400-1105-0-043	. 125

•	1400-1105-0-044	126
•	1400-1105-0-045	126
•	1400-1105-0-046	127
•	1400-1105-0-047	127
Ref	ferencias	155

Glosario

- 1. BMC: Modulo de control de carrocería.
- Lay out: cuadrícula imaginaria que divide en espacios o campos la página que se diseña para facilitar la distribución de elementos como textos ó gráficos en la misma.
- 3. O-Port: Puerto de salida digital.
- 4. BCD: Interruptor codificado binarario.
- 5. BNI: interfaz de red Balluff.
- 6. I.Port. puerto de entrada digital.
- 7. FE: funciones de la tierra.
- 8. GSD-Datai: Descripción genérica estación.
- 9. SELV: seguridad de muy baja tensión.

ÍNDICE DE FIGURAS

Figura 1. Body module control 1996 (BMC).	18
Figura 2. Body module control (BMC) de Chapa fina de estilo antiguo 1980	18
Figura 3 1986 Cadillac Allante red, el circuito 800, la línea UART - El ALDL, conector	de
diagnóstico.	21
Figura 4. Línea de datos	23
Figura 5 Ensamble explosionado y especificación de partes del BCM Front	24
Figura 6 Ensamble explosionado y especificación de partes del BCM Rear	24
Figura 7 Sistema óptico de verificación de pines ubicados en los conectores	25
Figura 8 Análisis de posición de pines a través de cámara COGNEX	25
Figura 9 Lector de códigos marca KEYENCE HR-100	30
Figura 10 Rango de iluminación del anillo de luz COGNEX HPR-150	32
Figura 11 Sensor BALLUFF BOS 0100	33
Figura 12 Sensor BALLUFF BOS 0109.	35
Figura 13 Sensor BALLUFF BOS 01JK.	37
Figura 14 Cámara COGNEX IS-8402.	39
Figura 15 Escáner lector de códigos para clasificación de productos	41
Figura 16 indicador de luz marca BANNER.	44
Figura 17 Sensor FESTO SIES-8M-PS-24V-K-7,5-OE.	45
Figura 18 Distribuidor BALLUFF BNI IOL-104-000-K006.	46
Figura 19 sistema de movimiento de dos ejes marca FESTO	48
Figura 20 Principales partes del HMI SIEMENS MODELO 277.	51
Figura 21 Torre de luz BANNER	52
Figura 22 Sensor de presión FESTO SERIE SPAB-P10R-G18-2P-M8	53
Figura 23 Cortinas de seguridad marca BANNER SLPP25-830P88	55
Figura 24 Partes del sensor BANNER VTBP6BLQ.	56
Figura 25 Dimensiones generales del sensor opto-eléctrico BANNER.	57
Figura 26 Interlock SCHMERSAL AZM 161CC-12/12RKA-024.	58
Figura 27 Diagrama de solenoide	60
Figura 28 Gabinete eléctrico marca Rittal.	61
Figura 29 Arquitecturas de Sistemas de Control.	62
Figura 30 Características principales del distribuidor BALLUFF	63
Figura 31 Unidad de mantenimiento combinada FESTO MSB4	66
Figura 32 Sujetador para perfilaría 45X45L	68

Figura 33 Perfilaría de aluminio Bosch 45x45	69
Figura 34 Dimensiones generales perfil Bosch 45x45.	69
Figura 35 Perfilaría de aluminio Bosch 45x45	69
Figura 36 Dimensiones generales perfil Bosch 45x90.	70
Figura 37Bujes Misumi JBH6-8	70
Figura 38 Plugger Misumi BLPS6-25.	71
Figura 39 Manija Misumi	73
Figura 40 Cilindro festo de simple efecto.	74
Figura 41 Dimensiones generales y globos marcados	77
Figura 42 Vistas de sección de la estructura	77
Figura 43 Cierre de la estructura.	79
Figura 44 Unidad de mantenimiento.	79
Figura 45 Cajonera automatizada para piezas no ok	80
Figura 46 Iluminación interna de la máquina	81
Figura 47 Instalación de Sensor de presión FESTO.	81
Figura 48 Montaje de alarma visual	82
Figura 49 Guardas de Acero Inox. Para cortinas de seguridad BANNER	83
Figura 50 Montaje de interlock SCHMERSAL	83
Figura 51 Botón de inicio BANNER	84
Figura 52 Modelo CAD de botonera	84
Figura 53 Control a través de botones.	85
Figura 54 Instalación del panel de control HMI.	85
Figura 55 Ventana de mantenimiento.	86
Figura 56 Mesa auxiliar de verificación con GAGES	87
Figura 57 Método de prueba manual para pines Rear	87
Figura 58 Método de prueba manual para pines Front	88
Figura 59 Ensamble general del sistema de verificación	88
Figura 60 Posición de velicación del Gantry.	89
Figura 61 Vista lateral de verificación de Cámara Cognex	89
Figura 62 Clasificación de modelo de producto y correcta colocación	89
Figura 63 Placa de aluminio de t=1.25 in.	90
Figura 64 Ensamble del escáner de Código 2D.	90
Figura 65 Instalación de Cámara de verificación para pines.	91
Figura 66 Sensor de presencia de material	91

Figura 67 Sensor de correcto posicionamiento del BMC	. 92
Figura 68 Tooling para colocación de BMC	. 93
Figura 69 Tooling cargado con Producto BMC versión Rear	. 93
Figura 70 Tooling cargado con Producto BMC versión Front	. 94
Figura 71 Sistema en operación	. 94
Figura 72 Organigrama de puestos de Mondragón Assembly México	101
Figura 73 Lay out de las instalaciones de Mondragón Assembly México	103

ÍNDICE DE TABLAS

Tabla 1 Tabla de especificaciones del lector de códigos KEYENCE	31
Tabla 2 Especificaciones eléctricas del anillo de luz.	32
Tabla 3 Características generales.	33
Tabla 4 Características eléctricas.	34
Tabla 5 Características mecánicas.	34
Tabla 6 Características ópticas	35
Tabla 7 Características generales.	35
Tabla 8 Características eléctricas.	36
Tabla 9 Características mecánicas.	36
Tabla 10 Características ópticas	36
Tabla 11 Características generales	37
Tabla 12 Características eléctricas.	38
Tabla 13 Características mecánicas.	38
Tabla 14 Características ópticas	39
Tabla 15 Características generales del sistema de visión	39
Tabla 16 Tabla de especificaciones	42
Tabla 17 Tabla de especificaciones	43
Tabla 18 Tabla de especificaciones del indicador de luz	44
Tabla 19 Hoja de datos	45
Tabla 20 Características generales	46
Tabla 21 Características eléctricas.	47
Tabla 22 Características mecánicas.	47
Tabla 23 Hoja de datos	49
Tabla 24 Hoja de datos	50
Tabla 25 Tabla de especificaciones	53
Tabla 26 Normas de certificación de equipo SCHMERSAL.	58
Tabla 27 Propiedades generales.	58
Tabla 28 Datos mecánicos.	59
Tabla 29 Datos eléctricos.	60
Tabla 30 Especificaciones generales de Gabinete eléctrico.	61
Tabla 31 Características del producto	62
Tabla 32 Características mecánicas.	63
Tabla 33 Características eléctricas.	64

Tabla 34 Manifold FESTO	64
Tabla 35 Tabla de datos	64
Tabla 36 Datos generales	66
Tabla 37 Datos generales	67
Tabla 38 Información general	70
Tabla 39 Características generales	72
Tabla 40 Tabla de selección de variables	72
Tabla 41 Información general	73
Tabla 42 Especificaciones generales	74
Tabla 43 Ensamble general de la máquina	76
Tabla 44 Tabla de información general de la estructura	78
Tabla 45 tabla de especificaciones del Tooling	94

RESUMEN

El siguiente reporte se basa en la memoria de residencia la cual fue realizada el en la ciudad de Querétaro, Queretano, llevando por título DISEÑO MECÁNICO DE ESTACIÓN PARA INSPECCIÓN ÓPTICO AUTOMÁTICO DE PINES, PARA MÓDULOS DE CONTROL DE CARROCERÍA (BCM), DE MERCEDES-BENZ PARA LA EMPRESA HELLA AUTOMOTIVE MEXICO, este proyecto fue vendido y diseñado en Mondragón Assembly México, el reporte describe los procesos de diseño y los materiales comerciales utilizados, así como tratamientos superficiales dados a piezas maquinadas. El producto a trabajar en esta máquina es de la empresa Mercedes Benz, es un sistema que controla partes del auto como cierre y apertura de ventanas, sistema de aire acondicionado, bloqueo antirrobo, sistema de iluminación, etc. Comúnmente conocemos este elemento como la computadora del automóvil, lo que se pretende hacer en esta máquina es verificar el centraje de los pines tomando una toleración de ±0.09mm a partir del centro del barreno donde sale el pin, este análisis se hará a través de cámara, en esta máquina se correrán dos tipos de BMC, y si hubiera un tercer modelo el diseño está predispuesto para hacer otras adaptaciones.

ABSTRACK

The following report is based on the memory of residence which was on in the city of Queretaro, Queretaro, carrying titled MECHANICAL DESIGN STATION FOR INSPECTION OPTICAL AUTOMATIC PINES FOR MODULES CONTROL BODY (BCM), Mercedes- BENZ HELLA AUTOMOTIVE COMPANY FOR MEXICO, this project was sold and designed in Mexico Mondragon Assembly, the report describes the design processes and commercial materials and surface treatments given to machined parts. The product to work on this machine is the company Mercedes Benz, is a system that controls auto parts such as opening and closing windows, air conditioning, anti-theft lock, lighting system, etc. This element commonly known as automobile computer, which is intended to do in this machine is to check the centering of the pins taking a toleration of \pm 0.09mm from the center of the hole where the pin out, this analysis will be done through camera on this machine are two types of BMC is run and if there was a third model design is predisposed to make other adaptations.

INTRODUCCION

Este proyecto se elaboró para la obtención del título de ingeniero mecánico, comprende en una estadía, que se desarrolla en la empresa MONDRAGÓN ASSEMBLY MEXICO S.A. DE C.V, que se encuentra ubicado en la ciudad de Santiago Querétaro, Querétaro.

La cual es en una empresa que da soluciones más rentables a las necesidades de Diseño, automatización y fabricación de maquinaria para integrar líneas de producción del ensamble.

El presente proyecto consiste en una estación de verificación automática óptica de pines, de módulos de control de carrocería de tipo BC-R de MERCEDES-BENZ para para la empresa HELLA AUTOMITIVE MEXICO.

El presente proyecto fue contemplado como "DISEÑO MECÁNICO DE ESTACIÓN PARA INSPECCIÓN ÓPTICO AUTOMÁTICO DE PINES, PARA MÓDULOS DE CONTROL DE CARROCERÍA (BCM), DE MERCEDES-BENZ PARA LA EMPRESA HELLA AUTOMOTIVE MEXICO". El cual consistió en realizar el diseño mediante CAD (Diseño asistido por computadora), en el programa SOLIDWORKS, donde se desarrolló virtualmente las representaciones de dibujos de piezas y piezas de ensambles, de cómo está construida la máquina, como tal, el seguimiento de la funcionalidad de automatizar las referencias de tolerancias de posicionamiento de pines para la conexión de las señales.

En el presente documento se detalla la metodología para desarrollar el diseño mecánico y plantear la definición de los objetivos generales y específicos, el cual nos servirá para tener una perspectiva correspondiente de lo que contendrá en el diseño.

CAPITULO I

Marco de referencia

1.1 Antecedentes

El automóvil moderno ha progresado mucho en los últimos 100 años. Así como nuestra vida cotidiana, la vida de los consumidores se ha sofisticado, nuestro transporte ha seguido su ejemplo. Así cómo complejo del automóvil moderno se ha convertido. Vemos todos los aparatos de alta tecnología hoy en día, Internet de alta velocidad, computadoras de velocidad alta y sistemas de entretenimiento de lujo, estos conceptos están todos en el moderno coche. En este documento se explican algunos detalles de nuestros sistemas informáticos modernos automóviles.

Para entender la necesidad de redes de automoción, una breve explicación de un automóvil sistema eléctrico es necesaria. Los vehículos más antiguos comenzaron con algunos primitivos sistemas de control. La bobina de encendido para disparar la carga de combustible en la combustión interna del motor fue sincronizada por los puntos de ignición y programada para los motores de orden de encendido. Era un sistema mecánico básico y no siempre fue el más eficiente, ya que se basó en unos dispositivos mecánicos para proporcionar el tiempo que siguió una curva set y tuvo que mover las piezas a desgastar. Numerosos controles móviles de tipo de contacto de diferentes partes de vehículos cuidados a fallar o desgastarse rápidamente debido a las duras condiciones presentes en los coches, como el calor, el frío y vibraciones continuas. Sistemas de control de estado sólido modernos comenzaron a aparecer en el principios de los setenta como la tecnología de transistor y productos de estado sólido más baratos entraron en el mercado.

El transistor proporciona una excelente manera de incorporar cosas tales como la mecánicas puntos de contacto en los módulos de encendido electrónico que no requieren mantenimiento, eran mucho más fiable y podría ser producido a bajo costo.

Otras cosas que contribuyeron a un cambio en los sistemas de gestión de automóviles fue la necesidad de más controlar con precisión los sistemas del motor de un vehículo con el fin de mantenerse al día con el aumento de las emisiones y las normas de economía de combustible.

En los primeros años sesenta, con la producción de automóviles se eleva y Eisenhower con el nuevo sistema de la carretera federal en USA, hizo el viaje en automóvil mucho más fácil, la gente comenzó a darse cuenta que la atmósfera de la tierra se estaba poniendo cada vez más contaminado por los gases nocivos que fueron eructos fuera de la selva de la automoción. Las grandes ciudades como Los Ángeles y Nueva York City estaban desarrollando grandes problemas de smog y había alguna necesidad de mejorar la cantidad de contaminación entrar en nuestra atmósfera. La Ley de Aire Limpio en 1967 comenzó una tendencia en el control de nuestros vehículos de forma muy precisa para limpiar nuestras áreas urbanas.

La primera Ley de Aire Limpio solamente hizo cosas muy mínimas tales como requerir la los gases del cárter para ser un sistema cerrado y óxidos nitrosos que se reduzcan las emisiones. El cambio muy grande llegó en 1980 con el inicio de la versión revisada de 1977 versión de la Ley de Aire Limpio, que establece algunas normas de emisiones más altas, fuera de la ley con plomo gasolina, introducido los convertidores catalíticos como equipos obligatorios y necesarios vehículos para monitorear sus emisiones de controles con una luz en el tablero de instrumentos llamado comprobar la luz del motor.

Este fue el comienzo real, la luz del motor. Todos los vehículos vendidos en los EE.UU. requerían tener un sistema de control que a su vez en esta lámpara si hubiera una fallo eléctrico de cualquier tipo de emisiones de componentes y vehículos relacionados tendrían que ser capaces para mostrar un código de error que decirle al taller de reparación de la que el sistema era el culpable. Por supuesto, con los estándares de emisiones más estrictos, los fabricantes tendrían que cambiar a la inyección de combustible moderno de todos modos (ya que era más eficiente) e informatizado los controles eran necesarios para controlar esta

inyección. General Motors fue el precursor en tecnologías informatizadas con los otros dos fabricantes de automóviles nacionales sólo cumplir lo mínimo para acatar con las nuevas regulaciones. Así que la historia moderna comienza realmente en 1980 con una luz del motor y un ordenador primitivo en todos los vehículos de USA.

Estas computadoras eran bastante primitivas, grandes cajas de lata con bordes, y conectores que tenían una tendencia a oxidarse y causar problemas de manejo. Así retirar los conectores de la computadora en los modelos Cadillac 1980, eran frotando los conectores en el borde de mesa con un borrador, Esto limpiaba la oxidación en el circuito de rastros de oxidación y restaurar un circuito de malos conductores. Las primeras computadoras de automoción también tenían dispositivos mecánicos en ellos, tales como sensores de vacío que requerirían una aspiradora pequeña con una manguera que le permitiera entrar en la parte externa del equipo que afectó la integridad.

Eventualmente, alguien tuvo la idea correcta de poner el sensor de vacío externo en el compartimiento del motor con cables sellados con terminales que dejaran entrar en las cajas de los ordenadores. Se tenía lo que se llamaba Tap-Test, que era justo lo que sonaba como; que ha tocado ligeramente en el ordenador de un vehículo con un problema en el motor extraño. El equipo estaba fallando. Esto era bastante común en los años ochenta y principios de los noventa hasta un caso y el circuito más robusto, el tablero fue diseñado en 1996 con el advenimiento de las leyes de emisión más estrictas. Las nuevas tarjetas de circuitos tenían un recubrimiento sobre ellos para resistir la corrosión de las juntas de soldadura debido a las vibraciones y los nuevos casos fueron de fundición de aluminio y sellado mucho mejor.

Figura 1. Body module control 1996 (BMC).

Este es el caso una computadora moderna, podemos ver que es mucho más gruesa que la antigua (Figura 2), la cubierta de acceso es para el control electrónico de modulo extraíble.

Figura 2. Body module control (BMC) de Chapa fina de estilo antiguo 1980.

Este es el caso de chapa fina de estilo antiguo .El panel extraíble en la parte de atrás era para el PROM, que podría ser cambiado.

Los primeros inicios de redes automotrices comenzaron en los modelos de Cadillac y Oldsmobile de principios de los años ochenta con la llegada de un segundo equipo que no sea el módulo central de control del motor. Este nuevo equipo tenía un microprocesador y fue llamado el BCM (Body Control Module). El módulo de control del motor (ECM) controlaría todas las funciones del motor, mientras que los artículos controlados BCM como la iluminación automática, HVAC (calefacción y aire acondicionado) y controles de alarma y funciones de bloqueo. El BCM se produjo como demandas de los consumidores y la competencia llevaron a nuevos comodidades en el automóvil moderno. GM necesita para conseguir un método para ligar estos dos equipos entre sí.

El ECM y BCM se comunicarían cosas tales como la temperatura del motor y la información de tiempo de ejecución de vehículos entre sí a través de un protocolo llamado UART (transmisor receptor asíncrono universal). Las comunicaciones en un solo alambre redujeron redundante 5 cableado en gran medida con los sensores simplemente conectados a un módulo. Este UART era un lenguaje binario con los valores dentro o fuera controlada por una señal de cero voltios o 5 voltios que variaban en anchura de impulso. Una de mis manuales de formación a partir de 1986 la electrónica Cadillac Allante BCM se describe el funcionamiento de la UART. Con el sistema en reposo a 5 voltios, el BCM, que controla la temporización del bus y el tráfico, los pulsos a cabo un código de dirección. Todos los módulos de ver este código como en el protocolo de Ethernet, pero sólo el módulo con ese código particular puede responder al mensaje. Todos los módulos pueden escuchar y decodificar los mensajes, sin embargo, para que puedan leer cierta información, como los datos de temperatura del refrigerante del motor, que es en el autobús con frecuencia. Un módulo no dejó de responder a menos que se dirige directamente por el BCM. El BCM no puede enviar cualquier otro mensaje hasta que haya terminado primero la conversación que sólo estaba teniendo.

El dispositivo receptor tirará del sistema de alto por lo que se declara inactivo, entonces responderá enviando su propio código de dirección, entonces envía sus

datos. Pasará a tener el sistema de alta, por lo que se declaró una vez más inactivo. A continuación, se permitió que el BCM para seguir hablando. El ECM y BCM se comunicarían cosas tales como la temperatura del motor y la información de tiempo de ejecución de vehículos entre sí a través de un protocolo llamado UART (transmisor receptor asíncrono universal).

Las comunicaciones en un solo alambre redujeron redundante 5 cableado en gran medida con los sensores simplemente conectados a un módulo. Este UART era un lenguaje binario con los valores dentro o fuera controlada por una señal de cero voltios o 5 voltios que variaban en anchura de impulso. Una de mis manuales de formación a partir de 1986 la electrónica Cadillac Allante BCM se describe el funcionamiento de la UART. Con el sistema en reposo a 5 voltios, el BCM, que controla la temporización del bus y el tráfico, los pulsos a cabo un código de dirección. Todos los módulos de ver este código como en el protocolo de Ethernet, pero sólo el módulo con ese código particular puede responder al mensaje. Todos los módulos pueden escuchar y decodificar los mensajes, sin embargo, para que puedan leer cierta información, como los datos de temperatura del refrigerante del motor, que es en el autobús con frecuencia un módulo no se le permite responder a menos que se dirige directamente por el BCM. El BCM no puede enviar cualquier otro mensaje hasta que haya terminado primero la conversación que sólo estaba teniendo.

El dispositivo receptor tirará del sistema de alto por lo que se declara inactivo, entonces responderá enviando su propio código de dirección, entonces envía sus datos. Pasará a tener el sistema de alta por lo que se declaró una vez más inactivo. A continuación, se permitió que el BCM para seguir hablando.

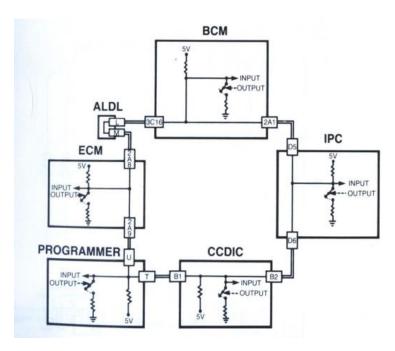


Figura 3. 1986 Cadillac Allante red, el circuito 800, la línea UART - El ALDL, conector de diagnóstico.

Unos años más tarde, el tablero de instrumentos digital (IPC) recibió otro microprocesador que comunica con los otros dos módulos en la línea de datos en serie UART dedicado. Este fue un solo circuito que se ha hecho referencia a tierra y fue compartida en cierta pin en cada módulo. Para evitar colisiones de datos y establecer un protocolo de comunicaciones, uno de los módulos se designaría "Master of the bus", lo que significaba que tenía el deber de consultar con todos los módulos y la asignación de tiempo de transmisión a fin de facilitar una red funcional del "bus" de datos en serie. En un momento dado los modelos de Cadillac recibieron un nuevo módulo bajo el tablero, llamada la fuente de alimentación central que actuaba como una fuente de alimentación universal para aislar los distintos módulos de microprocesadores del resto del sistema eléctrico del automóvil que podría tener picos dañinos y variaciones en el voltaje.

Uno por uno más módulos 7 aparecieron como por ejemplo el módulo de control del ventilador (para controlar con precisión el ventilador de refrigeración del motor), el módulo de apertura a distancia, que recibió las microondas desde un mando a distancia del vehículo para abrir las puertas y enviar una alarma de señal

al BCM. La suposición Oldsmobile Cutlass Trofeo tenía una pantalla táctil en el tablero de la CRT que se sumó al bus UART. Un módulo de control electrónico de frenos apareció a mediados de los años ochenta a los coches de gama alta que controlaban todas las funciones del sistema de frenos antibloqueo. Esto es necesario EBCM de funcionamiento del motor y la información de los sensores del vehículo de los otros módulos y encontramos este por estar atado al bus UART. Añadir un módulo de control de la suspensión a la mezcla, un módulo de sistema de airbag (SDM), etc., y la red se llena más y más ocupada con el paso del tiempo.

Los principales equipos de control del motor pasaron por una serie de cambios a lo largo los años. Los primeros fueron llamados el ECM corta para el módulo de control del motor. Esto sólo controla el sistema motor. Como este equipo principal empezó a controlar las nuevas transmisiones automáticas controladas electrónicamente su designación cambió a un módulo de control del tren motriz PCM. Algunos equipos principales controlan la transmisión, el motor y el sistema ABS; éstos fueron llamados el módulo de control del vehículo o VCM. A medida que las transmisiones automáticas se volvieron más complejos, algunos sistemas comenzaron a separar la PCM de nuevo en el ECM y TCM o un módulo de control de transmisión separada. Esto fue posible ya que los sistemas de redes se han vuelto más complejos para permitir la integración de la primera en dos. Al igual que en Internet y las redes de negocios de la lista de siglas comenzó a crecer.

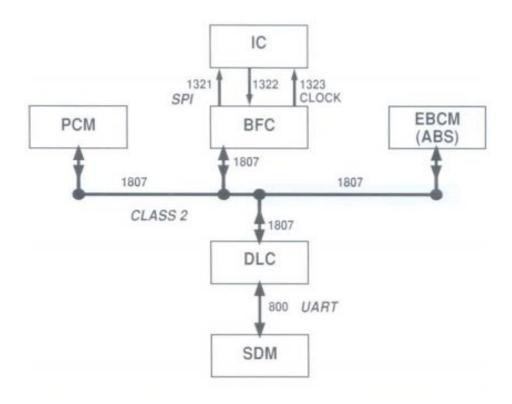


Figura 4. Línea de datos

Un vehículo modelo posterior se muestra arriba. Se puede ver la Clase 2 en el circuito de datos 1807, la UART en el circuito 800 y el interfaz periférico serie utilizando un arreglo de tres hilos. IC es cuadro de instrumentos, BFC es cuerpo del controlador de funciones (BCM), DLC es el conector de enlace de datos y SDM es el módulo de detección y diagnóstico (bolsa de aire).

El diagnóstico de estos sistemas cuando había un problema con uno de los módulos, especialmente en los primeros días. La mecánica automotriz que no tenían un gran conocimiento de los sistemas electrónicos a menudo imagino causando gran gasto innecesario de forma incorrecta al cliente cuando sus tres módulos eran malos, cuando en realidad era sólo uno de ellos o un problema de cableado. A menudo, un módulo mal haría que la línea de datos colapsara (tablero de mandos y la pantalla HVAC irían negro), dando la apariencia de que todos los módulos no funcionaban. A veces desconectar un módulo a la vez haría que el sistema para volver en línea que identifica el módulo defectuoso.

En la Actualidad los equipos BMC son diversos materiales y los que se trabajaran en esta máquina son inyección de plásticos, por evitar muchos problemas de corrosión como se explica anteriormente.

Los productos que se manejan en la estación son los siguientes:

• BCM Star 2 Gen 2 – Front

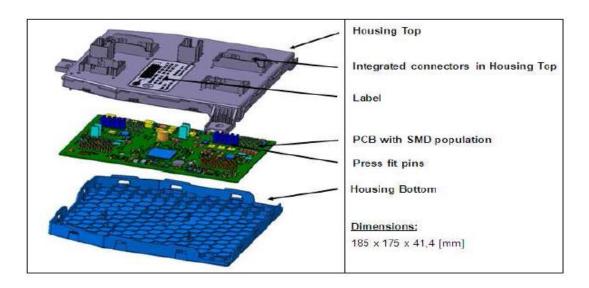


Figura 5.- Ensamble explosionado y especificación de partes del BCM Front.

BCM Star 2 Gen 2 – Rear

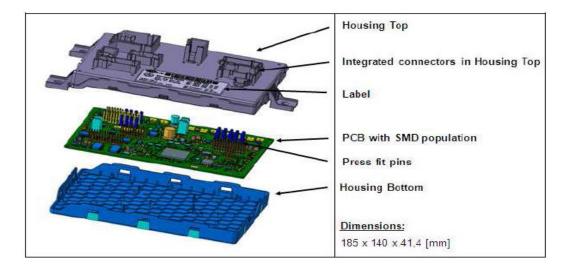


Figura 6.- Ensamble explosionado y especificación de partes del BCM Rear.

1.2 Planteamiento del problema

El problema principal que ha de resolverse y erradicar; es manipular de manera automatizada la inspección de pines, ya que antes de llegar a la estación de verificación pasan por un proceso de ensamblaje del housing top, PCB y housing bottom, esto ha generado irregularidades en la centricidad de los pines ubicados en el PCB que salen a través de conectores ubicados en el housing top, de tal forma que se quiere estandarizar la posición de los pines y garantizar que no haya ningún problema cuando conecten con la contra parte de los conectores integrados en el housing top, por ello la empresa HELLA AUTOMTIVE solicito que los pines pueden estar centrados con una tolerancia de ±0.09mm, de la contrario son piezas no funcionales.

Figura 7.- Sistema óptico de verificación de pines ubicados en los conectores.

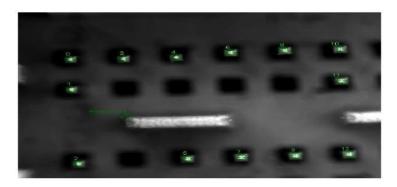


Figura 8.- Análisis de posición de pines a través de cámara COGNEX.

1.3 Justificación

La empresa ensambladora de componentes electrónicos de autos HELLA AUTOMOTIVE MEXICO S.A DE C.V. tiene una gran demanda en la exportación de partes que integran a diversos vehículos. Para lograra niveles competitivos y abastecer la demanda requiere de máquinas que optimicen el proceso de revisión del producto y de esta manera se minimicen los tiempos de verificación en la parte mecánica y garantizar calidad del producto.

Es así, que se propone una solución para el sistema concentrado, que consiste en el diseño de una máquina que realizar de manera automatizada la verificación de pines, a través de un herramental, se coloca el producto Body Module control (BMC) y un escáner analiza cuál de los dos modelos del BMC se encuentra a verificación, es así que podemos analizar el modelo y los pines de del BMC, además de esto se propone como segunda medida de verificación un mesa auxiliar con conectores para tener una segunda medida de verificación.

Por esto se planea como una alternativa contar con la aplicación de mantener los estándares de operación referente a la calidad del producto y de ser lo más apto posible en su proceso de ensamblaje; y reducir riesgos de piezas dañadas en el lapso de tiempo en producción en línea.

1.4 Objetivos

1.4.1 Objetivos generales

Diseñar una estación que cumpla con las normas y especificaciones del cliente. Que el operario sea capaz de realizar las actividades con la mayor eficiencia y seguridad, donde los tiempos ciclo y el tiempo de producción sean los adecuados para que la producción no se vea afectada.

1.4.2 Objetivos específicos

Para cumplir el objetivo general, se han planteado los siguientes objetivos:

- Realizar investigación sobre trabajos relacionados con el mismo tema.
- Obtener resultados que favorezcan el tiempo ciclo de producción.
- Mejor ergonomía para el operario.
- Confiabilidad al cliente.
- Seguridad del operario y del producto.

1.5 Alcances y limitaciones

Alcances:

- 1. Se realizar la simulación el cual el ambiente virtual nos permitirá visualizar el comportamiento del gantry system.
- 2. La verificación de pines se hará mediante comparación de un modelo ideal
- 3. La programación se hará mediante PLC.
- 4. El Gantry System se realizara mediante las especificaciones establecidas por la marca adquirida.

5. Hacer lo más fácil posible, el desmonte del herramental para que no perder tiempo de producción.

Limitaciones:

- 1. El proyecto está limitado en tiempo para elaboración de maquinados y entrega de elementos comerciales para ensamblaje de los mismos.
- La oferta y costo, se pretende tener un margen de ganancia hacia la empresa Mondragón Assembly México, el mayor máximo posible sin que afecte la calidad de funcionamiento de la máquina, ni ponga en riesgo a la misma.
- 3. Debido a la estandarización de espacios en casa del cliente, solicita dimensiones a la estructura de la máquina.
- 4. Entregar en tiempo y forma la maquina al cliente funcionando de madera adecuada y segura.

CAPITULO II

MARCO TEORICO

En este capítulo se presentan elementos mecánicos, electrónicos y eléctrico utilizados en la elaboración de este proyecto, que es de suma importancia conocer características de cada uno de estos elementos que conforman el sistema, para poder hacer una integración adecuada con menores errores posibles y cuidando la seguridad de los mismos para su buen funcionamiento.

2.1 Características de los elementos físicos

1. Lector de códigos en mano

Este elemento tiene Fácil captura Código permite la lectura de alta velocidad Gracias a una amplia zona de lectura y la profundidad de lectura grande, los códigos son capturados fácilmente en la tira del gatillo, Lectura de alta velocidad que no estaba disponible con lectores portátiles convencionales ahora es posible, además soporta Caída de resistencia al impacto a 1,8 m, la serie HR-100 está diseñada para soportar caídas accidentales. Se puede utilizar sin temor a daños en caso de caída. Inalámbrico, El nuevo modelo inalámbrico de la serie HR-100 elimina la necesidad de colocación de los cables desafiante. El aumento de la movilidad puede conducir a mejoras sustanciales en la productividad.

Figura 9.- Lector de códigos marca KEYENCE HR-100

Tabla 1.- Tabla de especificaciones del lector de códigos KEYENCE.

Model			HR-100	
Туре			Standard	
Interface			Wired	
Light source			Red LED	
Wireless	Standard			
Reading specifications	Supported symbol	2D	QR, MicroQR, DataMatrix (ECC200), PDF417, MicroPDF417, GS1 Composite (CC-A/CC-B/CC-C), MaxiCode, Aztec Code	
		Barcode	CODE39, ITF, 2of5 (Industrial 2of5), NW-7 (Codabar), CODE128, GS1-128, GS1 DataBar, CODE93, JAN/EAN/UPC, MSI, Postal, CODE11, 2of5	
	Minimum	2D	0.169 mm 0.007"	
	resolution	Barcode	0.127 mm 0.005"	
	Reading distance	2D	15 to 180 mm 0.59" to 7.09" (Cell size = 0.254 mm 0.01")	
		Barcode	25 to 115 mm 0.98" to 4.53" (Narrow bar width = 0.127 mm 0.005")	
Rating	ating Power voltage		4.0 to 5.5 VDC	
Current consumption.			Reading: 450 mA, Standby: 90 mA	
Environmental	Ambient temperature		0 to 50°C 32 to 122°F	
resistance	Relative humidity		5 to 95% RH (no condensation)	
	Ambient light		Sunlight: 10000 lux, Fluorescent lamp: 2000 lux	
	Drop impact resistance		1.8 m 5.91' 50 times on concrete	
Operating time				
Dimensions			161 × 86 (head) × 71 mm (head) 6.34" × 3.39" × 2.80"	
Weight			Approx. 150 g	

2. Anillo de luz

El uso de la energía LED mejora notablemente la intensidad de luz en comparación con las luces del anillo de difusión convencionales. La estructura de iluminación única logra un área uniforme con una mayor flexibilidad, La estructura única iluminación se difunde de manera efectiva e irradia luz del LED. Puesto que hay poco cambio en el área uniforme incluso si la distancia a partir de una pieza de trabajo a una la luz se cambia, esta serie se puede utilizar en una amplia variedad de entornos y para diversas aplicaciones.

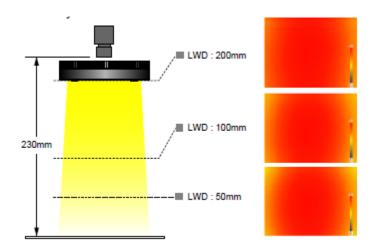


Figura 10.- Rango de iluminación del anillo de luz COGNEX HPR-150.

Tabla 2.- Especificaciones eléctricas del anillo de luz.

Model	HPR-150RD	HPR-150SW/BL	
Voltage	24V DC		
Power consumption	16W	20W	
Mass	250g		
Connector type	3P (1:+,2:NC,3:-)		

3. Sensores optoelectrónicos

Estos sensores nos ayudan a obtener la correcta posición del producto a trabajar por lo que cuenta con las siguientes especificaciones técnicas.

• BALLUFF BOS 0100

Figura 11.- Sensor BALLUFF BOS 0100

Tabla 3.- Características generales.

Grupo de productos	Sensor optoelectrónico
Principio de funcionamiento óptico	Receptor
Serie	Serie 2K
Forma constructiva	Rectángulo, conexión 90°
Dimensiones	7.6x13.0x25.1 mm
Alcance Sn	Sn = 1.2 m
Tipo de luz	LED de luz roja
Conexión	Cable con conector, M8x1-S49
Salida de conmutación	PNP (1x)
Función de conmutación	Contacto NA
Tensión de servicio	10.030.0 V
Frecuencia de conmutación p. máx. (para Ue)	200 Hz
Temperatura ambiente	-2050 °C
Grado de protección según IEC 60529	IP67
Emisor de referencia	BOS 2K-X-RS10
Propiedades especiales	Forma constructiva pequeña

Tabla 4.- Características eléctricas.

Caída de tensión Ud máx. (para Ie)	2.5 V
Corriente asignada de servicio Ie	50 mA
Corriente en vacío máx. Io para Ue	10 mA
Frecuencia de conmutación p. máx. (para Ue)	200 Hz
Función de conmutación	Contacto NA
Ondulación residual máx. (% de Ue)	20 %
Retardo de conexión ton máx.	2.50 ms
Salida de conmutación	PNP (1x)
Tensión de aislamiento asignada Ui	50 V CC
Tensión de servicio asignada Ue CC	24.0 V
Tensión de servicio UB máx. CC [V]	30.0 V
Tensión de servicio UB mín. CC [V]	10.0 V
Tipo de conexión	Cable con conector
Versión eléctrica	CC, corriente continua

Tabla 5.- Características mecánicas.

Alcance Sn	Sn = 1.2 m
Distancia de actuación real Sr	1200 mm
Forma constructiva	Rectángulo, conexión 90°
Longitud 1	7.6 mm
Longitud 2	13.0 mm
Longitud 3	25.1 mm
Longitud de cable	0.20 m
Material de carcasa	ABS
Material de superficie activa	PMMA
Rango de actuación Ro	01.2 m
Temperatura ambiente Ta máx.	50 °C
Temperatura ambiente Ta mín.	-20 °C
Tipo de conector	M8x1-S49
Tipo de fijación	Tornillo M3

Tabla 6.- Características ópticas.

Función de conmutación óptica	NA: actuación por oscuro
Luz externa máx.	5,000 lux
Principio de funcionamiento óptico	Receptor
Tipo de luz	LED de luz roja

• BALLUFF BOS 0109

Figura 12.- Sensor BALLUFF BOS 0109.

Tabla 7.- Características generales.

Clase de protección	III
Diagnostic Coverage	0 %
Functional Safety	No
Grado de protección según IEC 60529	IP67
Grupo de productos	Sensor optoelectrónico
Homologaciones/conformidad	CE
Mission Time	10 a
MTTF (40°C)	769 a
Norma básica	IEC 60947-5-2
Protección contra polarización inversa	Sí
Receptor de referencia	BOS 2KRE10
Serie	Serie 2K
Texto adicional	Solicitar los accesorios por separado. Para más información: ver Instrucciones de servicio.

Tabla 8.- Características eléctricas.

Corriente en vacío máx. Io para Ue	20 mA
Ondulación residual máx. (% de Ue)	20 %
Tensión de aislamiento asignada Ui	50 V CC
Tensión de servicio asignada Ue CC	24.0 V
Tensión de servicio UB máx. CC [V]	30.0 V
Tensión de servicio UB mín. CC [V]	10.0 V
Tipo de conexión	Cable con conector
Versión eléctrica	CC, corriente continua

Tabla 9.- Características mecánicas.

Alcance Sn	Sn = 1.2 m
Forma constructiva	Rectángulo, conexión 90°
Longitud 1	7.6 mm
Longitud 2	13.0 mm
Longitud 3	25.1 mm
Longitud de cable	0.20 m
Material de carcasa	ABS
Material de cubierta de cable	PVC
Material de superficie activa	PMMA
Rango de actuación Ro	01.2 m
Temperatura ambiente Ta máx.	50 °C
Temperatura ambiente Ta mín.	-20 °C
Tipo de conector	M8x1-S49
Tipo de fijación	Tornillo M3

Tabla 10.- Características ópticas.

Longitud de onda	660 nm
Principio de funcionamiento óptico	Emisor
Tamaño de punto luminoso, típico	Ø10 mm a 100 mm
Tipo de luz	LED de luz roja

• BALLUFF BOS 01JK

Figura 13.- Sensor BALLUFF BOS 01JK.

Tabla 11.- Características generales.

Africandos	Datamaión atms 6 amaltas (1.1)
Ajustador	Potenciómetro 6 vueltas (1x) Potenciómetro 270° (1x)
Diagnostic Coverage	0 %
Functional Safety	No
Grado de protección según IEC 60529	IP67
Grupo de productos	Sensor optoelectrónico
Homologaciones/conformidad	CE
	cULus CDRH
Indicación	Función de salida - LED YE
	Estabilidad - LED GN
Marca	GLOBAL
Mission Time	10 a
MTTF (40°C)	3 a
Norma básica	IEC 60947-5-2
Posibilidad de ajuste	Distancia de actuación (Sn) Conmutación claro/oscuro
Protección contra cortocircuito	Sí
Protección contra polarización inversa	Sí
Protección contra polarización inversa	31

Tabla 12.- Características eléctricas.

Caída de tensión Ud máx. (para Ie)	1.5 V
Corriente asignada de servicio Ie	100 mA
Corriente en vacío máx. Io para Ue	35 mA
Frecuencia de conmutación p. máx. (para Ue)	2000 Hz
Función de conmutación	Contacto NA/NC (NA/NC)
Ondulación residual máx. (% de Ue)	10 %
Retardo de conexión ton máx.	0.25 ms
Salida de conmutación	PNP (1x)
Tensión de servicio asignada Ue CC	24.0 V
Tensión de servicio UB máx. CC [V]	30.0 V
Tensión de servicio UB mín. CC [V]	10.0 V
Tipo de conexión	Conector
Versión eléctrica	CC, corriente continua

Tabla 13.- Características mecánicas.

Alcance Sn	Sn = 300 mm, ajustable
Desv. distancia 18 % máx. (% de Sr)	8 %
Distancia de actuación mín.	20 mm
Distancia de actuación real Sr	300 mm
Forma constructiva	Rectángulo, conexión 90°
Longitud 1	10.8 mm
Longitud 2	19.5 mm
Longitud 3	43.5 mm
Margen de captación Sd	20300 mm
Material de carcasa	PC, PBT
Material de superficie activa	PMMA
Par de apriete máx.	0.5 Nm
Temperatura ambiente Ta máx.	55 °C
Temperatura ambiente Ta mín.	-10 °C
Tipo de conector	M8x1-S75
Tipo de fijación	Tornillo M3

Tabla 14.- Características ópticas.

Clase de láser según IEC 60825-1	1
Función de conmutación óptica	NA/NC: actuación por claro/oscuro
Longitud de onda	650 nm
Luz externa máx.	5,000 lux
Particularidad óptica	Supresión de fondo
Potencia media Po máx.	< 390 µW (IEC 60825-1)
Principio de funcionamiento óptico	Detector fotoeléctrico, triangulación
Tamaño de punto luminoso, típico	0.2 mm x 0.3 mm en el foco
Tipo de luz	LÁSER de luz roja

4. Sistema de visión COGNEX IN-SIGHT MICRO

Los sistemas de visión In-Sight serie 8000 son una línea completa de sistemas de visión compactos que ofrecen capturas de alta velocidad, una gama de resoluciones de hasta 5 MP, comunicación de alta velocidad con Gigabit Ethernet y una rápida, revolucionaria e increíble herramienta de correspondencia de patrones: PatMax RedLine™. Los modelos In-Sight serie 8000 cuentan con el software In-Sight Explorer convenientemente configurado. El software In-Sight Explorer combina la configuración guiada paso a paso de EasyBuilder con la potencia y flexibilidad adicional de la hoja de cálculo para un mayor control y personalización.

Figura 14.- Cámara COGNEX IS-8402.

Tabla 15.- Características generales del sistema de visión.

Tamaño	IS8000: 31 mm x 31 mm x 63 mm
Carcasa	IS8000: IP40 (IS8405: IP30)
Conectores	IS8000: M12 industriales para PoE y M8 para IO IS8405: RJ45 para PoE, M8 para IO
Óptica	IS8000: Montaje C
Alimentación sobre Ethernet (PoE)	Sí

APLICACIONES DE LA CÁMARA COGNEX IS-8402

Inspección

Realiza una inspección para detectar errores de montaje, defectos en la superficie, piezas dañadas y características faltantes. Identifique la orientación, la forma y la posición de los objetos y sus características.

Medición

Mida las piezas o partes para verificar las dimensiones críticas y medir los componentes del producto para los procesos de clasificación y separación.

• Reconocimiento y Validación Ópticos de Caracteres (OCR/OCV)

Lea y verifique los caracteres alfanuméricos marcados directamente sobre las piezas e impresos en las etiquetas.

• Orientación y alineación

Guíe dispositivos robóticos y el equipo de automatización. Alinee las piezas para las operaciones de montaje que requieren alta precisión.

Lectura de códigos de barras

Lee códigos de barras 1D y códigos Data Matrix 2D como parte de una inspección total.

5. Lector de códigos 2D KEYENCE SR-752.

Sistema lector de códigos 2D, de tipo largo alcance, compatible con Ethernet, el cual es un estándar de transmisión de datos para redes de área local que se basa en el siguiente principio:

Todos los equipos es una red Ethernet están conectados a la misma línea de comunicación compuesta por cables cilíndricos.

Figura 15.- Escáner lector de códigos para clasificación de productos.

Tabla 16.- Tabla de especificaciones.

Modelo			SR-752 ^{*1}
Tipo			Largo alcance
Receptor	Sensor		Sensor de imágenes CMOS
	Número de píxeles		752 x 480 píxeles
Iluminación	Fuente de luz		LED rojo
Apuntador láser			Láser semiconductor visible, longitud de onda de 660 nm
	Salida		60 μW
	Duración del pulso		200 μs
	Clase de láser		Producto láser clase 1 (IEC60825-1, FDA (CDRH) Part 1040.10*2)
Especificaciones de E/S	Entrada control	Número de entradas	2
		Tipo de entrada	Entrada de voltaje bidireccional
		Valor maximo	26.4 VCD
		Voltaje mínimo en ON	15 VCD
		Corriente máxima en OFF	0.2 mA o menos
	Salida de control	Número de salidas	3
		Tipo de salida	Salida de relevadores Photo MOS
		Valor maximo	30 VCD
		Máxima corriente de carg	1 salida: 50 mA o menos, Total de 3 salidas: 100 mA o menos
		Fuga de corriente en OFF	0.1 mA o menos
		Voltaje residual en ON	1 V o menos
	Ethernet	Estándar de comunicació n	10BASE-T/100BASE-TX
		Protocolo soportado	TCP/IP, FTP, SNTP, BOOTP, EtherNet/IPTM, PROFINET, MC protocol, KV STUDIO
	Comunicación en serie	Estándar de comunicació n	RS-232C compatible
		Velocidad de transmisión	9600, 19200, 38400, 57600, 115200 bps
	Salida de control	Número de salidas	Asíncrono
	Comunicación en serie	Protocolo soportado	No procedimental, protocolo MC, SYSWAY, KV STUDIO

Tabla 17.- Tabla de especificaciones.

	Resolución mínima	2D	0.19 mm 0.007"
a		Código de barras	0.17 mm 0.007"
	Símbolo permitido	2D	QR, MicroQR, DataMatrix (ECC200), GS1 DataMatrix, PDF417, MicroPDF, Composite Code (CC-A, CC-B, CC-C)
		Código de barras	GS1DataBar,CODE39,ITF,NW-7 (Codabar),CODE128,GS1-128,JAN/EAN/UPC,CODE39 FullASCII, CODE93,2of5 (Industrial 2of5),COOP 2of5,Trioptic CODE39
	Distancia de lectura (ejemplos típico s)	DataMatrix QR	De 180 a 305 mm 7.09" a 12.01" Tamaño de celda = 0.5 mm 0.02")
		Código de barras	De 180 a 330 mm 7.09" a 12.99" Ancho de barra estrecha = 0.5 mm 0.02")
	Distancia focal		250 mm 9.84"
	Campo de visión (en la distancia foca	l)	65.0 x 41.5 mm 2.56" x 1.63"
Clasificación	Voltaje de la fuente de alimentación		Puerto de control: 24 VCD±10% o Puerto Ethernet: PoE TipoA/B 36 a 57 V (No puede suministrar al mismo tiempo)*3
Valor nominal	Consumo de corriente		Puerto de control: 220 mA (Cuando se utiliza una fuente de alimentación de 24 VCD) Puerto Ethernet: Alimentaci ón por Ethernet clase 2*4
Resistencia	Grado de protección		IP65
ambiental	Temperatura ambiente		De 0 a 45°C 32 a 113°F
	Temperatura ambiente de almacenar	niento	De -10 a +50°C 14 a 122 °F
Resistencia ambiental	Humedad ambiente de funcionamien	to	De 35 a 95% HR (sin condensación)
Resistencia ambiental	Humedad ambiente de almacenamiento		
Resistencia ambiental	Iluminación ambiental		Luz solar: 10000 lux, Lámpara incandescente: 6000 lux, Lámpara fluorescente: 2000 lux
Resistencia ambiental	Ambiente de funcionamiento		Sin presencia de polvo o gases corrosivos
Resistencia ambiental	Vibración		De 10 a 55 Hz Doble amplitud de 1.5 mm 0.06"/55 a 500 Hz: Aceleración 5G, 3 horas en las direcciones X, Y y Z
Peso			Aprox. 175 g

6. Indicador de luz multicolor marca BANNER

El indicador BANNER K50LGRY2PQ es una multifunción de 3 colores EZ – LIGHT CC operado con luz indicadora de 30 mm con rosca base de policarbonato y domo de policarbonato translúcido. Intensos niveles de salida de luz para aplicaciones al aire libre.

Figura 16.- indicador de luz marca BANNER.

Características

- Estilo de desconexión rápida.
- Conexión PNP (fuente) de entrada.
- Funciones de luz verde, rojo y amarillo.
- Robusto y fácil de instalar.
- Construcción completamente encapsulada.

Tabla 18.- Tabla de especificaciones del indicador de luz.

Tipo de Señal Visual	Flasheado, Estable
Módulo de Lente, Color	-
Diámetro de la Lente	50mm
Voltaje de Alimentación VCA	
Voltaje de Alimentación VCD	30V
Potencia Nominal	-
IP / NEMA	IP67
Altura Externa	38mm
Temperatura de Trabajo Mín.	40°C
Temperatura de Trabajo Máx.	50°C
Rango de Producto	-
Sustancia Extremadamente Preocupante (SVHC)	No SVHC (17-Dec-2015)

7. Sensor de proximidad FESTO SIES-8M-PS-24V-K-7,5-OE

Este sensor de tipo inductivo, nos proporciona la posición de elementos, el cual tiene las siguientes especificaciones técnicas.

Figura 17.- Sensor FESTO SIES-8M-PS-24V-K-7,5-OE.

Tabla 19.- Hoja de datos.

Característica	Propiedades
Fecha de envío + Precio neto	→ Indicación
Construcción	para ranura en T
Corresponde a la norma	EN 60947-5-2
Homologación	RCM Mark
	c UL us - Listed (OL)
Marca CE (ver declaración de conformidad)	según la normativa UE sobre EMC
Indicación sobre el material	Exento de cobre y PTFE
	Conforme con RoHS
Distancia de detección nominal	1,5 mm
Temperatura ambiente	-25 70 °C
Precisión de repetición en condiciones constantes	<= 0,05 mm, aproximación lateral
Salida	PNP
Función del elemento de conmutación	contacto de trabajo
Frecuencia máx. de conmutación	4.500 Hz
Corriente máxima de salida	150 mA
Anticortocircuitaje	ciclos
Margen de tensión de funcionamiento DC	10 30 V
Intensidad en reposo	<= 10 mA
Polos inconfundibles	para todas las conexiones eléctricas
Conexión eléctrica	Cable
	trifilar
Sentido de la conexión de salida	longitudinal
Condiciones de control línea	Resistencia a la flexión alternante según la norma Festo
	Condiciones de prueba sobre demanda
	Cadena de arrastre: 5 millones de ciclos, radio de curvatura 75 mm
Longitud del cable	7,5 m
Característica de la línea	Estándar+cadena de arrastre
Información sobre el material de la cubierta del cable	TPE-U(PU)
Tamaño	Ranura 8
Tipo de fijación	A ras con ranura 8
	Fijado con tornillos
	Montaje en la ranura por arriba
Información sobre el material del cuerpo	PA
	PUR
1-2	Acero inoxidable de aleación fina
Indicación del estado	LED amarillo
Temperatura ambiente con cableado móvil	-5 70 °C
Tipo de protección	IP65 IP67
Tensión de aislamiento	50 V
Resistencia a la tensión de choque	0,8 kV
Grado de ensuciamiento	3

8. Distribuidor marca BALLUFF para conexión de sensores

Este dispositivo se utiliza para energizar sensores conexión M12X1 con 8 puertos de conexión rápida y rápida instalación.

Figura 18.- Distribuidor BALLUFF BNI IOL-104-000-K006.

Tabla 20.- Características generales.

Diagnostic Coverage	0 %
Functional Safety	No
Grado de protección según IEC 60529	IP67 (en estado atornillado)
Grupo de productos	Distribuidor activo
Homologaciones/conformidad	CE
Indicación alimentación de sensores US	Yes
Indicación comunicación IO-Link	Yes, LED green
Indicaciones función de conmutación	Sí
Instrucciones de montaje	Ver Instrucciones breves
Mission Time	20 a
MTTF (40°C)	108 a
Protocolo de transmisión	Enlace-IO 1.0
Volumen de suministro	Instrucciones breves 12x Placa de identificación 4x tapones ciegos M12

Tabla 21.- Características eléctricas.

Ciclo de datos de proceso	3 ms con el tiempo de ciclo mínimo
Corriente total US (sensor)	1.2 A
Entradas	PNP, tipo 2
Entradas/salidas configurables	No
Indicación alimentación del módulo	Yes, LED green
Número de entradas	16
Tasa de transmisión	COM2 (38.4 Kbaudios)
Tensión de servicio asignada Ue CC	24 V
Tensión de servicio UB máx. CC [V]	30.2 V
Tensión de servicio UB mín. CC [V]	18 V
Tiempo de ciclo mín.	3 ms

Tabla 22.- Características mecánicas.

Altura	31.0 mm
Ancho	50.0 mm
Apantallamiento de carcasa	No
Conexión sensores/actuadores	M12x1
Forma constructiva	De dos hileras
Longitud	115.0 mm
Material de carcasa	Trogamid CX9704
Número de puestos enchufables	8
Temperatura ambiente Ta máx.	55 °C
Temperatura ambiente Ta mín.	-5 °C
Temperatura de almacenamiento máx.	75 °C
Temperatura de almacenamiento mín.	-25 °C
Tipo de fijación	Fijación de tornillo de 3 agujeros
Tipo de marco	2.2

9. Pórtico con dos ejes de movimiento marca FESTO

Pequeño pórtico superficie plana XY con el espacio de trabajo rectangular que ofrece una amplia funcionalidad con un diseño muy compacto, para cargas efectivas de hasta 3 kg.

Figura 19.- sistema de movimiento de dos ejes marca FESTO.

- Movimiento en los ejes XY.
- Excm -30 cuenta con interfaz flexible del motor en la parte superior o debajo.
- Excm 30 con eje Z opcional.
- Normalizada Festo plug & solución de trabajo con el paquete de la unidad de mando funcional, que consiste en la unidad y el controlador - integrado en Excm -10, opcional para Excm -30

Tabla 23.- Hoja de datos.

Característica	Propiedades
Tamaño	30
Modo de funcionamiento del controlador	etapa final de potencia PWM-MOSFET
	Regulador en cascada con
	Regulador de posiciones P
	Regulador de velocidad PI
	Regulador proporcional e integral de corriente
Modo de funcionamiento	Micropaso, 2000 pasos/giro
Reducción de corriente ajustable	mediante software
Posición de montaje	indistinto
Indicador de posición	Encoder
Filtro de red	integrado
Función de protección	Control Pt
	control de temperatura
	control de corriente
	detección de interrupción de la tensión
	control de error de persecución
	detección de posición final por software
Construcción	Pórtico con dos ejes de movimiento
Tipo de interpolación	Interpolación lineal
Tipo de motor	motor paso a paso
Modo de posición	Modo de selección del conjunto
	Posición transferida directamente
Display	7 segmentos
Ajuste de intensidad nominal	mediante software
Aceleración máxima	10 m/s2
Velocidad máxima	0.5 m/s
Precisión de repetición	+/-0,05 mm
Resistencia de frenado	15 Ohm
Características de la salida lógica digital	sin separación galvánica
Factor de utilización	100%
Intensidad máxima, salidas lógicas digitales	100 mA
Tensión máxima del circuito intermedio, DC	28 V
Tensión nominal DC, alimentación a la lógica	24 V
Tensión nominal alimentación de carga DC	24 V
Corriente nominal alimentación de carga	6 A
Corriente nominal alimentación de la lógica	0.3 A
Intensidad nominal efectiva por fase	3 A
Interfaz de configuración de parámetros	Ethernet
Control de posición	sí
Ethernet, protocolos compatibles	TCP/IP
Corriente máxima, alimentación de carga	8 A
Margen permisible, tensión de la lógica	± 15 %

Tabla 24.- Hoja de datos.

Característica	Propiedades
Marca CE (ver declaración de conformidad)	según la normativa UE sobre EMC
Temperatura de almacenamiento	-10 60 °C
Humedad relativa del aire	0 - 90 %
	sin condensación
Nivel de ruido	52 dB(A)
Tipo de protección	IP20
Temperatura ambiente	10 45 °C
Momento de retención del motor	0.5 Nm
Momento de impulsión máximo	0.2 Nm
Fuerza Fz máxima	1,345 N
Momento Mx máximo	5.5 Nm
Momento máximo My	10.9 Nm
Momento máximo Mz	5.5 Nm
Fuerza máxima del proceso en la dirección Z	100 N
Momento de giro nominal	0.04 Nm
Valor de referencia de la carga nominal, horizontal	3 kg
Valor de referencia de la carga nominal, vertical	2 kg
Número de salidas lógicas digitales a 24 V DC	5
Número de entradas lógicas digitales	9
Perfil de comunicación	FHPP
Interfaz del proceso	Acoplamiento E/S
	para 64 registros de desplazamiento
Especificación entrada lógica	Según IEC 61131-2
Margen de trabajo de las entradas lógicas	24 V
Características de la entrada lógica	Conectado galvánicamente con potencial de lógica
Lógica de conmutación de las salidas	NPN (conexión a negativo)
Lógica del circuito de entrada	NPN (conexión a negativo)
Lógica del interfaz de comunicación	CAN DS 301
	E/A 64pos
	Ethernet - TCP/IP
Tipo de fijación	Fijación para perfil
Indicación sobre el material	Conforme con RoHS

10. Panel móvil HMI marca SIEMENS

La interfaz de usuario / interfaz hombre-máquina (**HMI**) es el punto de acción en que un hombre entra en contacto con una máquina. El caso más simple es el de un interruptor: No se trata de un humano ni de una "máquina" (la lámpara), sino una interfaz entre los dos.

- Pulsador STOP (opcional)
- Display con pantalla táctil
- 3 Tapas para las guías de las tiras de rotulación
- Interruptor de llave (opcional)
- Volante (opcional)
- ® Teclado de membrana
- Pulsador luminoso (opcional)

Figura 20.- Principales partes del HMI SIEMENS MODELO 277.

11. Torre de luz: 4-color BANNER TL50

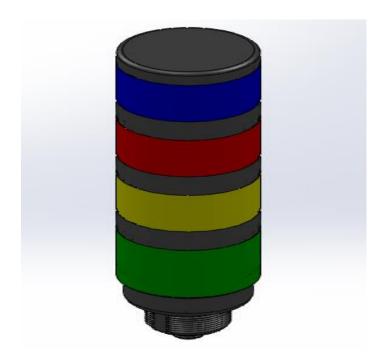


Figura 21.- Torre de luz BANNER.

Características principales

- Muestra hasta 5 colores LED en una sola torre; Elección de verde, amarillo, rojo, azul o blanco.
- 30 mm roscados Base para Directa caja y el panel de montaje con un solo orificio taladrado
- Robusto, rentable y fácil de instalar Indicadores de múltiples segmentos.
- Los segmentos iluminados proporcionan un fácil guía del operador y la indicación de estado del equipo.
- Completamente autónomo; No es necesario un controlador Inmune a interferencias EMI y RFI.
- No se requiere ensamblaje.
- Larga vida (100.000 horas) Promedio.

Tabla 25.- Tabla de especificaciones.

Diámetro de la base	:	50 mm
Tipo de lámpara	:	LED
Tipo de conección	:	integral QD
Consumo actual	:	45 mA
Altura	:	169,9 mm
Color de la carcasa	:	Negro
Índice de protección IP	:	IP67
color de la lente	:	Verde, Rojo, Amarillo
Temperatura máxima	:	50 ° C
Temperatura mínima	:	-40 ° C
Estilo de montaje	:	Directo
Número de elementos ligeros	:	3
Serie	:	Serie TL50
Sonda de componentes	:	No Componente Sounder
Características especiales	:	Rugoso, autónomo
Tensión de alimentación	:	18 a 30, 24 VAC, VDC
Rango de temperatura	:	-40 A +50 ° C

12. Sensor de presión FESTO

En un mecanismo de inyección electrónica, es la válvula que obtiene los datos del caudal de aire que penetra en el colector de admisión. Funciona traduciendo los diferentes estados de presión del colector de admisión mediante señales eléctricas que remite a la computadora electrónica.

Figura 22.- Sensor de presión FESTO SERIE SPAB-P10R-G18-2P-M8.

2-25.- hoja de datos

Característica	Propiedades
Homologación	RCM Mark
	c UL us - Recognized (OL)
Marca CE (ver declaración de conformidad)	según la normativa UE sobre EMC
Indicación sobre el material	contiene substancias perjudiciales para la pintura
	Conforme con RoHS
Magnitud de la medición	presión relativa
Método de medición	Sensor de presión piezorresistivo con indicación
Valor inicial del margen de medición de la presión	0 bar
Valor final del margen de medición de la presión	10 bar
Área de sobrecarga	15 bar
Fluido	Aire comprimido según ISO 8573-1:2010 [7:4:4]
Indicación sobre los fluidos de funcionamiento y de mando	Sin opción de funcionamiento con lubricación
Temperatura ambiente	-10 50 °C
Salida	2xPNP
Función de conmutación	Programable libremente
Función del elemento de conmutación	conmutable
Precisión de repetición de la salida de conmutación en ± % FS (% de	0.2 %FS
escala completa)	
Corriente máxima de salida	100 mA
Precisión del indicador FS	2 %FS
Anticortocircuitaje	sí
Margen de tensión de funcionamiento DC	12 24 V
Polos inconfundibles	para todas las conexiones eléctricas
Conexión eléctrica	Conector
	forma redondo
	según NE 60947-5-2
	M8x1
	4 contactos
Tipo de fijación	a elegir:
• •	atornillable
	con accesorios
Conexión neumática	Rosca exterior G1/8
	Rosca interior M5
Peso del producto	45 g
Información sobre el material del cuerpo	ABS reforzado
•	PBT reforzado
Tipo de display	LCD iluminado de varios colores
Unidad(es) representables	MPa
	bar
	kPa
	kgf/cm²
	psi
Indicación del estado	LCD amarillo
Posibilidades de regulación	Teach-In

2-26.- Hoja de datos

Característica	Propiedades
	mediante pantalla y teclas
Dispositivo de seguridad contra manipulaciones	PIN-Code
Margen de ajuste del valor de umbral	0100%
Margen de ajuste, histéresis	090%
Tipo de protección	IP40
Clase de resistencia a la corrosión KBK	2

13. Cortinas de seguridad BANNER

Las cortinas y barreras fotoeléctricas de seguridad se utilizan en lugares donde los movimientos de piezas de máquinas pueden entrañar un peligro para personas o mercancías. El equipo de protección garantiza una desconexión de las salidas, lo cual provoca una parada de la máquina.

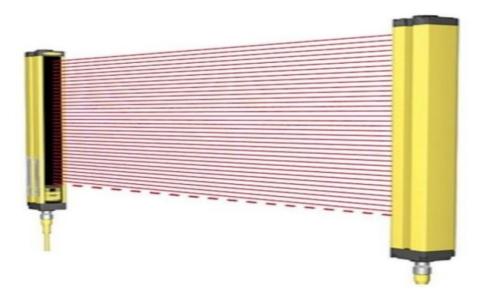


Figura 23.- Cortinas de seguridad marca BANNER SLPP25-830P88.

TABLA 2-27. Información técnica de cortinas de seguridad.

IP	Not Rated
Nivel de Rendimiento	-
Cortina de Seguridad, Categoría	Level 4
Nivel de Integridad de Seguridad	-
Estandards	-
Espaciado del Haz de Rayos	25mm
Salida de Control, Tipo	-
Núm. de Haces	-
Altura de Protección	830mm
Rango de Detección Máx.	7m
Tensión de Alimentación Máx.	24VDC
Rango de Producto	SLP Series
Sustancia Extremadamente Preocupante (SVHC)	No SVHC (17-Dec-2015)

14. Botón táctil óptico BANNER VTBP6BLQ

Botón táctil óptico ergonómico para aplicaciones de pick to light.

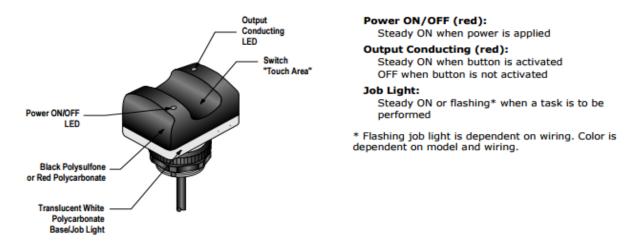


Figura 24.- Partes del sensor BANNER VTBP6BLQ.

- Los botones táctiles fotoeléctrica basados en microcontroladores.
- Una alternativa rentable y fácil de instalar en capacitivos táctiles y Botones mecánicos de inserción para aplicaciones y partes de verificación.
- Ergonómicamente diseñados para eliminar la mano, la muñeca y el brazo tensiones asociadas.
- Con el funcionamiento del interruptor repetido; no requiere presión física para operar.
- Base iluminado permite un brillante, fácil de ver la luz de trabajo en uno o dos colores, dependiendo del modelo.
- Los indicadores de alimentación y de salida del LED.
- NPN o PNP, dependiendo del modelo.
- Inmune a la luz ambiente, EMI y RFI.
- Exceso de cortes de alta ganancia a través de la contaminación del aire pesado para funcionar en casi cualquier entorno; opcional cubierta campo de protección disponibles.
- 12 a 30 V cc operación.

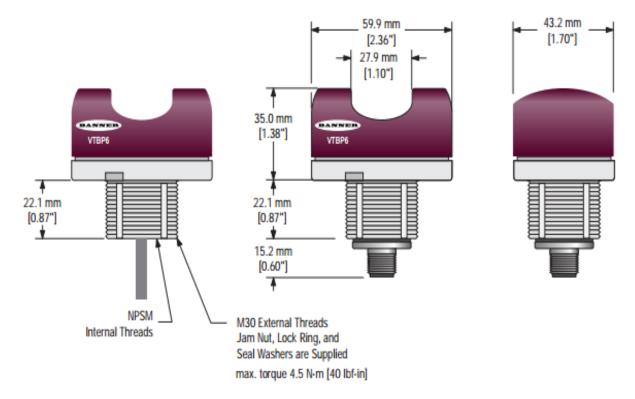


Figura 25.- Dimensiones generales del sensor opto-eléctrico BANNER.

15. Enclavamiento de solenoide SCHMERSAL SERIE AMZ

Un enclavamiento por solenoide con mecanismo de bloqueo mecánico positivo y un principio de funcionamiento totalmente sin contacto; a primera vista, parecen términos contradictorios, sin embargo, no lo son cuando se emplea la fuerza del electromagnetismo. El enclavamiento magnético de seguridad AZM de Schmersal. Emplea un electroimán para generar una fuerza de retención y transmite la señal de "enclavamiento bloqueado" al módulo de control de seguridad.

Figura 26.- Interlock SCHMERSAL AZM 161CC-12/12RKA-024.

Tabla 26.- Normas de certificación de equipo SCHMERSAL.

ENTINO ANDRO A

Normas	EN ISO 13849-1
Brod Contacto normalmente cerrado (NC)	2.000.000
Tiempo de misión	20 años
Nota	$MTTF_d = \frac{B_{10d}}{0.1 \times n_{op}}$
	$n_{op} = \frac{d_{op} \times h_{op} \times 3600 \text{ s/h}}{t_{oyole}}$

Tabla 27.- Propiedades generales.

Nombre de producto AZM 161

Normas EN 60947-5-1, BG-GS-ET-19

Conformidad con las Directivas (Y/N) € Sí

Nº de direcciones de actuación 3 pieza

Principio activo electro-mecánico

Duración de marcha Solenoide en marcha 100 %

Materiales

- Material de la carcasa Plástico, termoplástico reforzado con fiberglass, auto-

extinguible

- Material del la contactos Plata

Revestimiento de la caja Ninguno

Peso 500 q

Tabla 28.- Datos mecánicos.

Juego del actuador, en dirección del accionamiento 5,5 mm

Diseño de la conexión eléctrica Terminales a fuerza de resorte

Sección del cable

- Mín. Sección del cable 1 x 0,25 mm²
- Máx. Sección del cable 1 x 1,5 mm²

Vida mecánica > 1.000.000 maniobras

Nota Todas las indicaciones de secciones de hilos es con

terminales incluidas.

Desbloqueo de emergencia disponible (sí/no)

Rearme manual disponible (sí/no)

Desbloqueo Emergencia disponible (sí/no)

No

Fuerza de retención

Fuerza de apertura forzada

recorrido de apertura forzada

Tuerza de bloqueo F

No

20 N

2000 N

Máx. Velocidad de accionamiento 2 m/s

Frecuencia de actuación máx. 1000 / h

Tabla 29.- Datos eléctricos.

Diseño del elemento de conmutación Contacto normalmente abierto (NO), Contacto normalmente cerrado (NC) Principio de conmutación Elemento de conmutacción de arrastre Cantidad de contactos auxiliares 2 pieza Cantidad de contactos de seguridad 4 pieza Accionamiento por falta de tensión No Bloquea por tensión Sí Tensión nominal de alimentación Us 24 CA/CC máx. 10 W Consumo Resistencia al impulso de sobretensión Ump 4 kV Tensión de aislamiento nominal U 250 V Prueba de corriente térmica Ine 6 A Categoría de utilización AC-15: 230 V / 4 A. DC-13: 24 V / 2.5 A Corriente de cortocircuito 1000 A Fusible máximo 6 A gG fusibles D Según DIN EN 60269-1

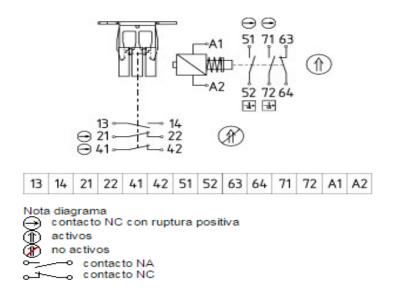


Figura 27.- Diagrama de solenoide.

16. Armarios compactos AE 1055.500

Armarios con puerta de chapa de acero, pintada con placa de montaje y entrada de cables en el suelo con grado de protección.

Figura 28.- Gabinete eléctrico marca Rittal.

Tabla 30.- Especificaciones generales de Gabinete eléctrico.

Material:	Caja: chapa de acero
	Puerta: Chapa de acero, junta continua de poliuretano inyectado
Superficie:	Armario y puerta: imprimación por inmersión, exterior texturizado, pintura estructurada
oupernote.	Placa de montaje: galvanizada
	i lava de montaje. galvanizada
Color:	RAL 7035
Grado de protección IP según IEC 60 529:	IP 68
Grado de protección	NEMA 4
NEMA:	
Código IK:	IK08
Unidad de envase:	Caja con puerta(s) con bisagras, cerrada en todo el contorno
	Placa(s) entrada de cables en el suelo de la caja
	Placa de montaje
Unidad de embalaje:	1 pza(s).
EAN:	4028177522930
Código arancelario:	94032080
eCI@ss 5.1:	27180102
CO18255 C. 1.	27 100 102
eCI@ss 7.0:	27180101
ETIM 6.0:	EC000281
Basic material:	
Dasic material:	Chapa de acero

Tabla 31.- Características del producto.

Dimensiones:	Anchura: 800 mm Altura: 600 mm Profundidad: 300 mm
Grosor del material:	Caja: 1,5 mm Puerta: 2 mm Placa de montaje: 2,5 mm
Placa de montaje:	Anchura: 749 mm Altura: 570 mm
Número puertas:	1
Bisagras a la derecha, intercambiables a izquierda:	sí
Ejecución cierre:	Aldabilla
N° de cierres:	2
Bombin de cierre:	Doble paletón 3 mm
Placa de entrada de cables, tamaño:	5
Placa de entrada de cables, cantidad:	1
Peso/UE:	33,9 kg

17.BALLUFF BNI PBS-502-001-Z001.

Sirve como un módulo de entrada / salida descentralizado para la conexión a un Profibus de red con 4 implementa la interfaz IO -Link.

Figura 29.- Arquitecturas de Sistemas de Control.

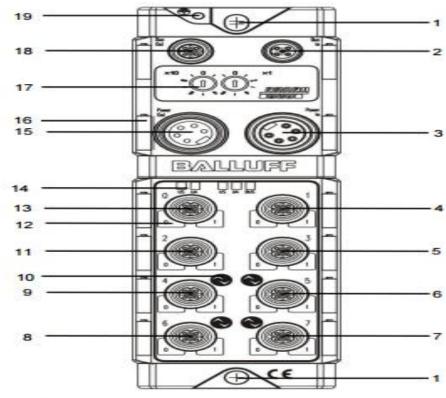


Fig.: 3-1: BNI PBS-502-000-Z001

```
1 Mounting hole
2 M12 Profibus IN
3 Supply voltage Power In
4 Standard I/O Port 1
5 Standard I/O Port 3
6 Standard I/O/IO-Link Port 5
7 Standard I/O/IO-Link Port 6
8 Standard I/O/IO-Link Port 6
9 Standard I/O/IO-Link Port 4
10 Symbol JO-Link-capable port*
```

Figura 30.- Características principales del distribuidor BALLUFF.

Tabla 32.- Características mecánicas.

Housing material	Die case zinc, matt nickel plated
Fieldbus	Profibus: M12, B-coded (female and male)
Supply power	5-pin, 7/8" (male)
I/O Ports	M12, A-coded (8 x female)
Enclosure rating	IP67 (only when plugged-in and threaded-in)
Weight	ca.: 735 g

Tabla 33.- Características eléctricas.

Operating voltage	18 30 V DC
Ripple	< 1 %
Current draw without load	≤ 200 mA
Service port	Balluff

18. MANIFOLD FESTO_34P-LK-U4A-K3L

Características generales

- Caudal: 130 ... 1.380 l / min.
- Ancho: 10, 14, 18 mm.
- Puerto M3, M5, M7, G 1/8, G 1/4
- Push-in: 3, 4, 6, 8 mm.
- Conexión eléctrica individual, multi-pin, bus de campo, IO-Link, I-Port.
- Voltaje de 5, 12, 24 V DC.
- -0.9 Presión de 10 bar.
- Grado de protección IP40 / IP65 / IP67.
- Válvulas semi en línea y la sub-base.
- Regleta de terminales de metal.

Tabla 34.- Manifold FESTO.

Tabla 35.- Tabla de datos.

Característica	Propiedades
Función de las válvulas	2/2 cerrada monoestable
	2x3/2 cerradas monoestables
	2x3/2 abiertas monoestables
	2x3/2 abiertas/cerradas monoestables
	3/2 cerrada monoestable
	3/2 abierta monoestable
	5/2 biestable
	5/2 monoestable
	5/3 a presión
	5/3 a descarga
	5/3 cerrada
Tamaño de las válvulas	10 mm
	14 mm
	20 mm
Caudal nominal normal máx.	360 l/min con 10 mm
Casta normal normal max.	670 l/min con 14 mm
	870 l/min con 20 mm
Presión de funcionamiento	-0.9 10 bar
Control eléctrico	Bus de campo
Control electrico	Multipolo
	IO-Link
	I-Port
Cantidad máxima de posiciones para válvulas	32
Número máx. de zonas de presión	9
Sistema eléctrico E/S	sí
Temperatura ambiente	-5 50 °C
Tipo de protección	IP65
	IP67
Homologación	RCM Mark
Tipo de accionamiento	eléctrico
Tipo de terminal de válvulas	34
Construcción	Corredera
	válvula de asiento con muelle de reposición
Tipo de control	eléctrico
Alimentación del aire de control	externo
	interno
Estructura del terminal de válvulas	Tamaños de válvulas combinables modulares
Indicación del estado de señal	LED
Apropiado para vacío	sí
Tensión nominal de funcionamiento DC	24 V
Fluido	Aire comprimido según ISO 8573-1:2010 [7:4:4]
Indicación sobre los fluidos de funcionamiento y de mando	Opción de funcionamiento con lubricación (necesaria en otro modo de funcionamiento)
Marca CE (ver declaración de conformidad)	según la normativa UE sobre EMC
Clase de resistencia a la corrosión KBK	3
Temperatura de almacenamiento	-20 40 °C
Temperatura del medio	-5 50 °C
Indicación sobre el material	Conforme con RoHS

19. Unidad de mantenimiento FESTO MSB4

La serie ofrece todas las funciones modernas de preparación de aire comprimido: válvulas reguladoras de presión, de cierre y de arranque progresivo con funciones de seguridad, filtros, sensores de presión y de caudal, unidad de secado, sensores y lubricadores. Así es posible encontrar siempre la solución óptima para cada aplicación. Gracias a su estructura modular, todos los componentes pueden combinarse indistintamente.

Figura 31.- Unidad de mantenimiento combinada FESTO MSB4.

Tabla 36.- Datos generales.

Característica	Propiedades
Categoría ATEX para gas	II 2G
	II 3G
Categoría ATEX para polvo	II 2D
	II 3D
Indicación sobre los fluidos de funcionamiento y de mando	Opción de funcionamiento con lubricación (necesaria en otro modo de
	funcionamiento)
Marca CE (ver declaración de conformidad)	según la normativa UE sobre EMC
	según la normativa UE sobre protección contra explosión (ATEX)
	según la normativa UE de baja tensión
Clase de resistencia a la corrosión KBK	2
Temperatura de almacenamiento	-10 60 °C
Temperatura del medio	-10 60 °C
Temperatura ambiente	-10 60 °C
Homologación	c UL us - Recognized (OL)
Tipo de fijación	con accesorios
Conexión neumática 1	G1/4
	G1/8
Conexión neumática 2	G1/4
	G1/8
Conexión neumática 3	G1/4
Información sobre el material del cuerpo	Fundición inyectada de aluminio
Información sobre el material del vaso del filtro	PC

Tabla 37.- Datos generales.

Característica	Propiedades
Tamaño	4
Serie	MS
Tipo de accionamiento	eléctrico
	manual
	neumático
Asegurar el accionamiento	Botón giratorio con cerrojo integrado
Posición de montaje	indistinto
	vertical +/- 5°
Grado de filtración	0.01 40 μm
Purga del condensado	completamente automático
	giro manual
	semiautomático
Construcción	Módulo de derivación
	Filtro de carbón activo
	Válvula reguladora de presión, con manómetro
	Válvula de arranque progresivo
	Válvula de arranque progresivo
	Filtro de fibras
	Filtro regulador con manómetro
	Filtro regulador sin manómetro
	Secador de membrana
	Lubricador proporcional estándar
	Filtro de material sinterizado con separador por centrifugación
	con función antirretorno
Función del regulador	Presión inicial
-	con compensación de la presión primaria
	con escape secundario
	con flujo inverso
Funda de protección	funda de protección de material sintético
Inicador de la presión diferencial	indicación óptica
	con sensor de presión
Indicación de la presión	con sensor de presión
·	con manómetro
Presión de funcionamiento	1.5 14 bar
Margen de regulación de la presión	1 12 bar
Caudal nominal normal	800 1,400 l/min
Valores característicos de las bobinas	110 V AC: 50/60 Hz, potencia de arranque de 3 VA, potencia de
	retención de 2,4 VA
	230 V AC: 50/60 Hz, potencia de arranque de 3 VA, potencia de
	retención de 2,4 VA
	24 V DC: 1,5 W
	24 V DC: 1,8 W

20. Sujetador BOSCH para perfil 45x45l

Características:

- lengüetas de alineación con ranura en T para facilitar el posicionamiento y la reducción del tiempo de montaje.
- Limpio, apariencia profesional.
- Se conecta en cualquier lugar de la ranura en T del perfil.
- Cartela y el hardware de conexión disponible como componentes separados.
- Tolerancias estrechas en los bordes de refuerzo proporcionan un ajuste al ras, apretado.
- lengüetas de alineación se pueden quitar fácilmente para las conexiones orientadas cruzadas.
- tapas opcionales disponibles.

Figura 32.- Sujetador para perfilaría 45X45L

Material:

- Rombo: de aluminio fundido a presión.
- acero galvanizado: sujetadores.
- tapa de la cubierta: negro de poliamida 6.

21. Perfilaría de aluminio BOSCH 45X45

Figura 33.- Perfilaría de aluminio Bosch 45x45.

Características:

- Propósito general, el perfil de servicio mediano para una amplia variedad de aplicaciones
- Tiene cuatro ranuras en T de 10 mm.

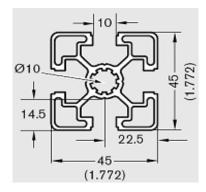


Figura 34.- Dimensiones generales perfil Bosch 45x45.

22. Perfilaría de aluminio BOSCH 45x90

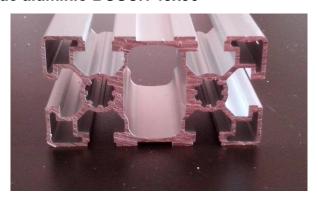


Figura 35.- Perfilaría de aluminio Bosch 45x45.

Características:

- Perfil de alta resistencia para un sólido desempeño robusto.
- El canal central puede ser utilizado como un colector de aire.
- Tiene seis ranuras en T de 10 mm.

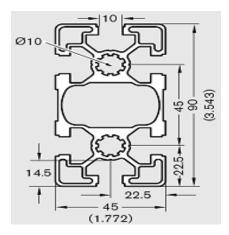


Figura 36.- Dimensiones generales perfil Bosch 45x90.

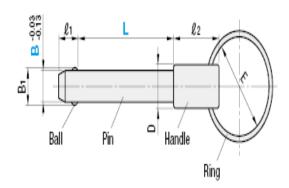
23. Bujes de posicionamiento MISUMI JBH6-8

Un buje es el elemento de una máquina donde se apoya y gira un eje. Puede ser una simple pieza que sujeta un cilindro de metal o un conjunto muy elaborado de componentes que forman un punto de unión.

Figura 37.-Bujes Misumi JBH6-8.

Tabla 38.- Información general.

Tipo	Cojinete	Forma básica	a hombros
Tolerancia Diámetro exterior	P6	soporte de fijación	No proporcionado
Material	EN 1.2510 equiv.	Tratamiento de superficies	No proporcionado
Forma Diámetro interior	Forma circular	Diámetro interior (mm)	6
Diámetro exterior (mm)	10	Longitud L (mm)	8


24. Plugger MISUMI BLPS6-25

Este elemento nos sirve para asegura elementos de tal forma que el mecanismo que lleva en la punta impide el deslizamiento.

Figura 38.- Plugger Misumi BLPS6-25.

Tabla 39.- Características generales.

Tipo		Pelota			Alfiler	Е	ncargarse de	Anillo		
L seleccionable	L configurable	M Material	H Dureza	M Material S Tratamiento de superficies		M Material	S Tratamiento de superficies	M Material	S Tratamiento de superficies	
BLPS	BLPF	ES 1,4125 equiv.	HRC55 ~	ES 1,1191 equiv.	Electrolítico niquelado	ES 1,0736 equiv.	Electrolítico niquelado	JIS- SWRH	Niquelado	

Tabla 40.- Tabla de selección de variables.

Número de pieza L			B ₁	l ₁		ρ_	mi	Precio unitario								
Tipo	segundo		Se	elecci	ón		D1	וין וין	re	₹ ₂	mi	L = 25	L = 30	L = 40	L = 50	L = 60
BLPS	5		30				5.5	6	11	22	25	-		-	-	-
	6	25	30	40	50		7	7	11	22	25					-
	8	25	30	40	50		9.5	8	11	22	25					-
DLF3	10	25	30	40	50	60	12	9	dieciséis	27	25					
	12					60	14.5	10	dieciséis	27	25	-	-	-	-	
	dieciséis					60	19	14	19	32	25	-	-	-	-	

25.- Manijas / offset MISUMI (UHFNS66)

Figura 39.- Manija Misumi.

Tabla 41.- Información general.

Tipo de cuerpo principal	Tipo de superficie	Tipo de superficie Categoría	Forma U
Tipo de forma de U	Tiradores de desplazamiento	Montaje de tono L (mm)	66
Material	EN 1.4301 equiv.	Altura total (mm)	47
Función adicional	No proporcionado	Tratamiento de superficies	El pulido
Método de montaje	girada	Manejar Espesor D (mm)	10
Pinzamiento de forma Transversal	Barras redondas	Selección arandela	-

26. Cilindro FESTO STA-20-15-PA.

Cilindro de tope STA-20-15-PA, Carrera = 15 mm, Diámetro del pistón = 20 mm, Amortiguación = P: anillos de amortiguación flexible / placas en ambos extremos, Modo de funcionamiento (* simple efecto, * acción de tracción).

Figura 40.- Cilindro festo de simple efecto.

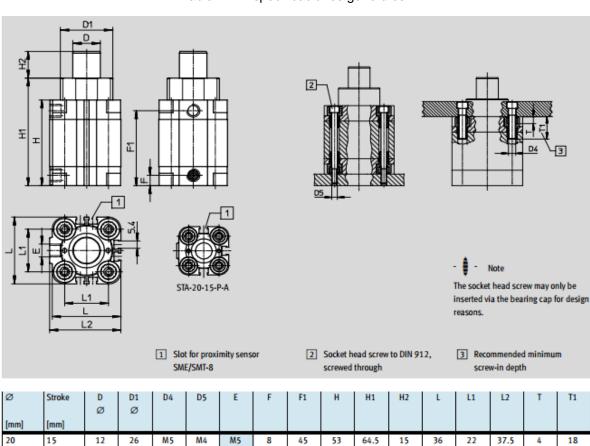


Tabla 42.- Especificaciones generales.

8

56.5

67.5

64.5

75.5

80.5

99.5

20

50

32

52

20

20

32

20

38

53

M6

M5

G1/8

CAPÍTULO III

Metodología de análisis

En este capítulo se detallan en distintas secciones las actividades realizadas para obtener el diseño de la estructura general, el herramental y sistema automático de verificación de pines, se detallada cada parte y se describen las características reales del sistema, después de ello, se presenta la simulación realizada mediante Solidworks.

3.1 Documentación del proyecto

El diseño general de la máquina está dividido en sub-ensambles y un ensamble general de la máquina, los cuales describiremos uno a uno.

1. Ensamble general de la maquina

La máquina cuenta con diversos sub-ensambles que iremos haciendo una descripción breve de cada uno de ellos para conocer su función y los elementos que lo conforman, de tal forma que la integración de cada uno nos da un modelo 3D de como lucirá la maquina final.

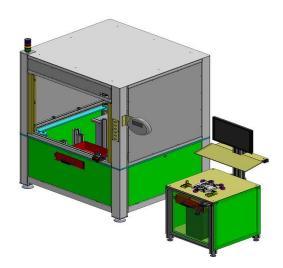


Tabla 43.- Ensamble general de la máquina.

2. Estructura de la maguina

El diseño mecánico de la máquina comienza principalmente de la bancada ya que la empresa HELLA AUTOMITIVE solicito una bancada estándar por motivos de espacios en sus instalaciones, la estructura principalmente está elaborada de perfil Bosch de aluminio, con uniones a través de empalmadores, todos los accesorios usados en la estructura así como la altura están expresados en la figura 37 y en el plano de ensamblaje de la máquina. Ver plano 1400-1105-0-S03.

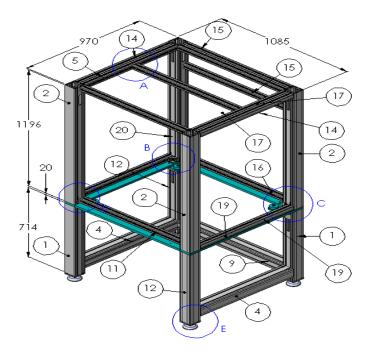


Figura 41.- Dimensiones generales y globos marcados.

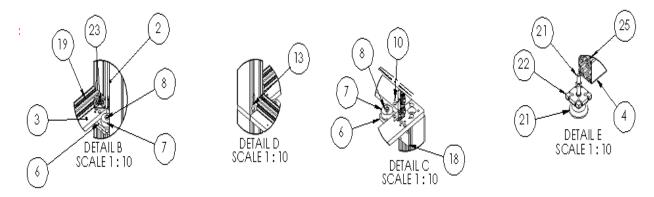


Figura 42.- Vistas de sección de la estructura.

Tabla 44.- Tabla de información general de la estructura.

ITEM No.	QTY.	PARTNUMBER	DESCRIPTION	SUPPLIER	GROUP
1	2	1400-1105-0-001	MAIN LOWER	PERFILERIA	PE
2	3	1400-1105-0-002	COLUMN	PERFILERIA	PE
3	2	1400-1105-0-003	BASE	MAQUINADO	M
4	2	1400-1105-0-004	LOE SIDE 800	PERFILERIA	PE
5	2	1400-1105-0-005	UPPER SIDE 800	PERFILERIA	PE
6	4	1400-1105-0-006	C ORNER SUPPORT	MAQUINADO	М
7	4	1400-1105-0-007	CENTERING	MAQUINADO	M
8	4	1400-1105-0-008	CENTERING PLATE	MAQUINADO	M
9	1	1400-1105-0-009	LOWER FRONT 900	PERFILERIA	PE
10	2	1400-1105-0-010	FRONT 900	MAQUINADO	M
11	4	1400-1105-0-011	UPPER FRONT 900	PERFILERIA	PE
12	2	1400-1105-0-012	MAIN LOWER COLUMN 2	PERFILERIA	PE
13	8	1400-1105-0-013	PROFILE JOINT	MAQUINADO	M
14	2	1400-1105-0-014	LATERA L CROSBA R 800	PERFILERIA	PE
15	2	1400-1105-0-015	CROSBAR 905	PERFILERIA	PE
16	1	1400-1105-0-016	CROSBAR 905	PERFILERIA	PE
17	1	1400-1105-0-017	Cover station	LEXAN	М
18	6	1400-1105-0-018	SUPPORT	MAQUINADO	M
19	2	1400-1105-0-019	LATERA L CROSBA R 800	PERFILERIA	PE
20	1	1400-1105-0-044	FRONT COLUMN	PERFILERIA	PE
21	4	BOSCH_3 842 311 951	LEVELING FOOT D90 MI 6X145	Bosch	С
22	4	BOSCH_3 842 511 352	3 842 511 352	BOSCH	С
23	6	BOSCH_3 842 523 561	45x45 gusset with fasteners	BOSCH	С
24	20	B OSCH_3 842 529 323	Fastener M6ranura 10	BOSCH	С
25	32	B OSCH_3 842 535 466	Empalmador de Apriete Rápido	BOSCH	С

Una vez diseñada la estructura general de la máquina, colocamos el cierre de la misma en la parte inferir colocamos acero A36 y en la parte superior alucobond. Ver plano de ensamble 1400-1105-0-S01.

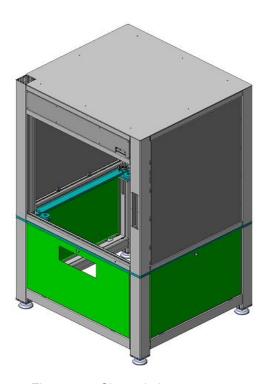


Figura 43.- Cierre de la estructura.

3. Unidad de mantenimiento

Debido a que los elementos que usaremos la gran mayoría son neumáticos es de suma importancia tener una unidad de mantenimiento, por lo que diseños una placa de acero inoxidable para hacer el montaje de la misma, la cual va en la estructura interna de la máquina. Ver plano de ensamble 1400-1105-0-S02.

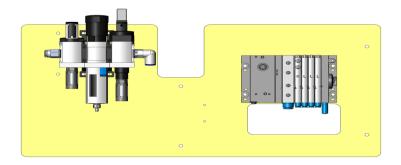


Figura 44.- Unidad de mantenimiento.

4. Piezas no ok

Debido a que en la empresa HELLA AUTOMOTIVE tiene altos estándares en cuanto a calidad de producto y la función principal de la máquina es verificar que las piezas se encuentren ensamblas correctamente, solicitaron que hubiera un sistema el cual, cuando se haga el análisis de los pines del módulo de control y estos no se encuentre en las tolerancias permitidas de centraje, la pieza automáticamente, es pieza no funcional, por lo que el operador vera una alarma que le indique que esa pieza no cumple con el estándar requerido, entonces el operador en turno sacara la pieza del herramental y colocara la pieza dentro de la cajonera que se ha diseñado.

Esta cajonera cuenta con un cilindro de simple efecto marca FESTO, el cual estará siempre activo funcionando como clamp a menos que las piezas no cumplan con el estándar de tolerancias de centraje, por lo que el cilindro se retraerá a su posición de Home dejando que el operador pueda colocar dentro la pieza no ok. Así mismo una vez que hayan cerrado la cajonera este cilindro se Extenderá y repetirá el ciclo. Ver plano 1400-1105-0-S04.

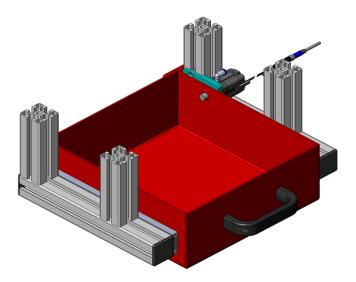


Figura 45.- Cajonera automatizada para piezas no ok.

5. Iluminación interna de la maquina

Debido a la alta demanda del producto Modulo de control de carrocería (BMC) la máquina estará operando los 3 turnos al día, por lo que un sistema de iluminación es muy necesario, estamos agregando una lámpara de led y diseñando unos soportes de tal manera que podamos fijarla al perfil Bosch.

Información general de los soportes de la lámpara, Ver plano 1400-1105-0-029.

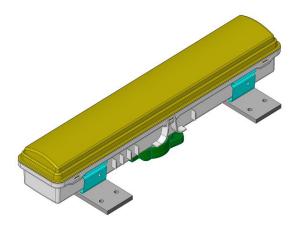


Figura 46.- Iluminación interna de la máquina.

6. Sensor de caudal

Por efectos de seguridad y mantenimiento el cliente HELLA AUTOMOTIVE, solicito que hubiera un sensor de caudal para que visualmente pudieran ver la presión de trabajo, así mismo diseñamos una base para colocar este sensor.

Ver plano 1405-1105-0-030.

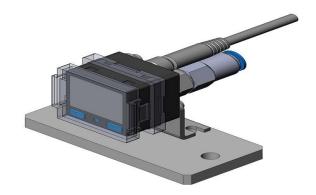


Figura 47.- Instalación de Sensor de presión FESTO.

7. Sistema de alamar visual

Este sistema nos ayuda a conocer el estado de la máquina y las condiciones de operación, se encuentra situado en la parte superior de la máquina, está unido a través de una solera con barrenos y fija sobre el perfil Bosch. Ver plano 1400-1105-0-034.

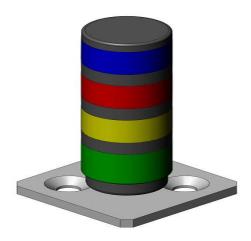


Figura 48.- Montaje de alarma visual.

8. Sistema de seguridad operador-maquina

La seguridad del operador es muy importante, ya que debemos cuidar la integridad del mismo, por lo que en este diseño se tomaron en cuenta cortinas de seguridad BANNER, que básicamente su función es, cuando la máquina se encuentra en función de trabajo, las cortinas detectan la entrada de algún objeto e interrumpen sus líneas de iluminación estas automáticamente bloquean el suministro de aire parando talmente el trabajo de la máquina.

Así aseguran que el operador este seguro en todo momento, una vez que se retira la interferencia de las cortinas estas desbloquean el suministro de aire reanudando el trabajo pausado, la instalación estas cortinas de seguridad van en la entrada principal de la máquina, por lo que se les coloco guardas de lámina de acero inoxidable para instalarlas hacia el perfil. Ver plano 1400-1105-0-035.

Figura 49.- Guardas de Acero Inox. Para cortinas de seguridad BANNER.

9. Sistema de bloqueo para ventana de mantenimiento

En el diseño se consideró una ventana de servicio que servirá para mantenimiento, esta debe estar bloqueada en todo momento a menos que se le indique en el HMI un desclampleo del equipo Schmersal, para poder abrir la venta.

El montaje del interlock está diseñado de tal manera que este sujeto a las placas de aluminio y estas se puedan sujetar a la estructura de perfil Bosch.

Figura 50.- Montaje de interlock SCHMERSAL.

10. Botón táctil de inicio de ciclo

La máquina cuenta con un botón de inicio de ciclo, el operador debe colocar el dedo índice y mantenerlo mientras se hace la verificación de los pines, esto como medida de seguridad para el operador no pueda distraerse en el área de trabajo. Por estandarización de la empre HELLA AUTOMITIVE este elemento no debe estar colocado a una altura mayor de 1 metro, ya la altura promedio de los mexicanos esta entre 1.65m.

Figura 51.- Botón de inicio BANNER.

11. Botones de ciclo

En este diseño está incluida una botonera de acero inoxidable, las cuales incluirá los siguientes botones. Ver plano 1400-1108-0-011

- Paro de emergencia
- Resert
- Control Off
- Control On
- Supervisión

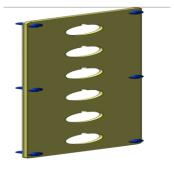


Figura 52.- Modelo CAD de botonera.

Figura 53.- Control a través de botones.

12. Panel control táctil HMI

A través de este sistema podemos manipular todos los sistemas eléctricos y neumáticos integrados en la máquina, por ello el HMI es un elemento de control, se dibujó un soporte de acero inoxidable para sostener el HMI y este mismo soporte para hacer la unión con la estructura de perfil.

Ver plano 1400-1108-0-012.

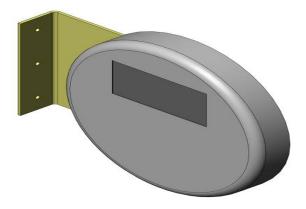


Figura 54.- Instalación del panel de control HMI.

13. Ventana para mantenimiento

La ventana que diseñamos es para mantenimiento, esta echa de perfil de aluminio Bosch de 45X45 mm, y el cierre es alucobond con uniones de Variofix, la ventana cuenta con un sistema de interlock Schmersal y un auto Clamp de Bosch, esta venta en todo momento debe estar cerrada mientras este en operación la máquina, a menos que se indique a través del HMI que la solenoide del interlock se desactive. Ver plano 1400-1108-0-S07.



Figura 55.- Ventana de mantenimiento.

14. Sistema auxiliar de verificación

Después de haber pasado por la cámara de inspección el BMC tendrá dos resultados si es pieza ok o no ok, en caso de ser pieza mala la empresa HELLA AUTOMOTIVE solicito una segunda verificación para los pines, el cual consta de una mesa auxiliar con guías para colocar el producto y unas contrapartes de los conectores llamados GAGES, serán colocados en el conector que correspondan y deberán entrar sin ningún problema, estos gages están maquinados de tal forma que tienen radio de tolerancia de 1.09 mm, midiendo el radio de los pines 1mm de tal manera que la tolerancia de concentridad es de 0.09 mm.

Además esta mesa auxiliar cuenta con un escáner para que nos ayude a clasificar el producto por modelo y una computadora para la captura de datos referente al análisis realizado, si la pieza sigue siendo mala tendrá un gabinete donde colocar la pieza que no pase la verificación.

Ver plano de ensamble 1400-1108-0-S01.

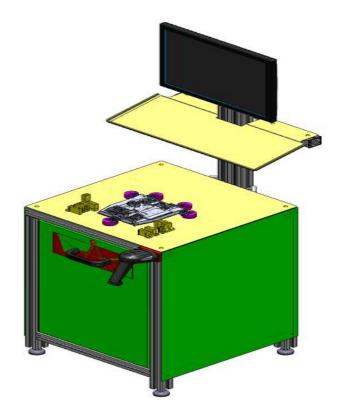


Figura 56.- Mesa auxiliar de verificación con GAGES.

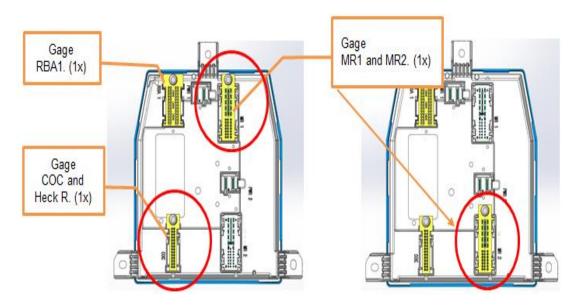


Figura 57.- Método de prueba manual para pines Rear

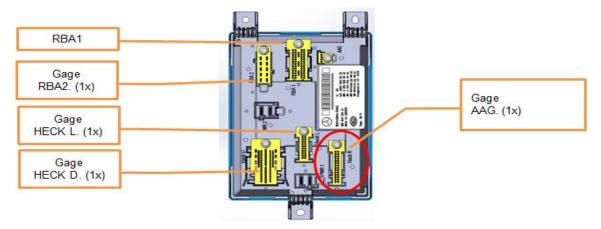


Figura 58.- Método de prueba manual para pines Front

15. Ensamble general del sistema de verificación

La estructura general que veremos a continuación nos ayudara a tener fácil carga y descarga del Tooling, así como la carga del producto, este es un ensamble muy liviano en cuanto a elementos integrados ya que se busca tener una integración de elementos menos posibles pero que cumplan con los funciones requeridas para el buen funcionamiento y control del mismo.

Ver plano de ensamble 1400-1108-1-S00.

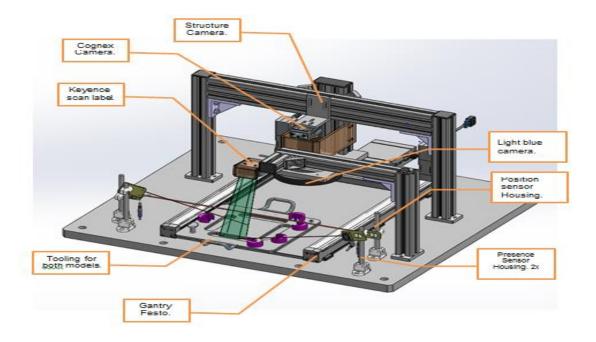


Figura 59.- Ensamble general del sistema de verificación.

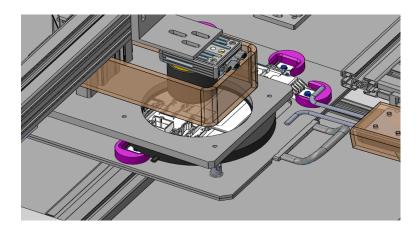


Figura 60.- Posición de velicación del Gantry.

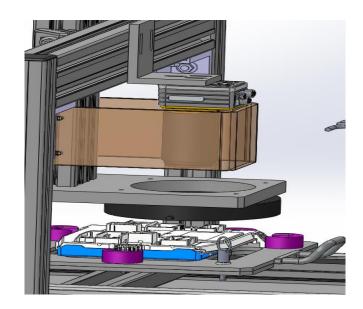


Figura 61.- Vista lateral de verificación de Cámara Cognex.

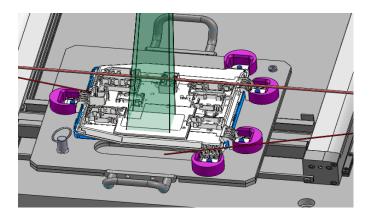


Figura 62.- Clasificación de modelo de producto y correcta colocación.

16. Placa base y montaje de gantry

Este sub-ensamble se diseñó una placa base que hace la unión de la estructura de aluminio de perfil Bosch la cual servirá para montar el Tooling, la placa base es de aluminio con tratamiento anodizado natural y perforada con para insertar tornillos, esta placa tiene instalada un distribuidor para sensores y el sistema gantry. Ver plano 1400-1108-1-S03.

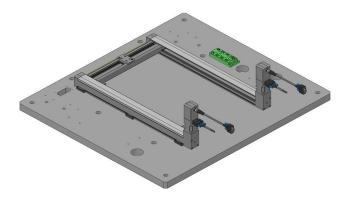


Figura 63.- Placa de aluminio de t=1.25 in.

17. Integración de escáner y alarma de luz

La estructura principal es de perfil de Bosch en ella está montada el escáner KEYENCE SR-752 para clasificación del producto, se diseñó una guarda de Lexan para tener protegido en todo momento el escáner y montada sobre una salera de aluminio, en esta estructura incluimos la alarma visual BANNER K50LGRY2PQ esta estructura conformara el Tooling. Ver plano 1400-1108-1-S04.

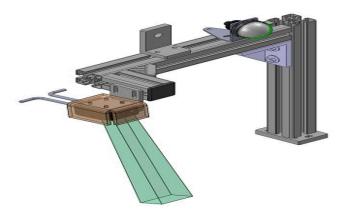


Figura 64.- Ensamble del escáner de Código 2D.

18. Sistema de visión e iluminación para verificación de pines

En este sub-ensamble integramos la cámara COGNEX con una lente y el controlador de la cámara de tal manera que podamos hacer la verificación sin ningún problema de colisión, el sistema de iluminación de la cámara es un anillo de luz, la estructura general es de perfil Bosch 45x45 mm.

Ver plano 1400-1108-1-S05

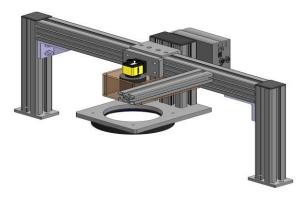


Figura 65.- Instalación de Cámara de verificación para pines.

19. Sensor de presencia de producto

Los elementos representados en este ensamble son todos comerciales y el ajuste fino del sensor nos da la pauta para que en todo momento cense si existe presencia del producto y pueda continuar el proceso de verificación.

Ver plano de ensamble 1400-1108-1-S07, 1400-1108-1-S08.

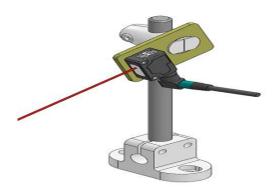


Figura 66.- Sensor de presencia de material.

20. Sensor optoeléctrico para correcta colocación del producto

Para un correcto análisis es muy importante que el producto en este caso el BMC tenga un correcto posicionamiento a la hora de ser cargado al Tooling por el operador, por lo que agregamos un sensor optoeléctrico marca BALLUFF con un alcance de censado de 1.2 m que nos ayudara a indicar que el producto está en las óptimas condiciones para iniciar el proceso de análisis de pines, de lo contario si el haz de luz del sensor se ve interrumpido lanzara una alamar visual que indicara que el producto se encuentra mal colocado y que el operador debe corregir ese detalle para que iniciara el ciclo de análisis.

Ver planos de ensamble 1400-1108-1-S09, 1400-1108-1-S10.

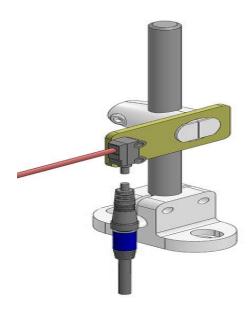


Figura 67.- Sensor de correcto posicionamiento del BMC.

21. Herramental para colocación del producto

En este herramental se adecuo para que le producto fuera montado de tal manera que no tuviera variación de posición en XYZ, se diseñó que no excediera un peso máximo de 3Kg ya que este Tooling se coloca sobre el Gantry marca Festo y este carga un peso límite de 3kg, en las placas del Tooling se le quito material agregándoles unos slots, este herramental también se puede desmontar por ello tiene bujes de centraje para una rápida extracción y unas manijas Bosch para el levantamiento.

Ver plano de ensamble 1400-1108-1-S11.

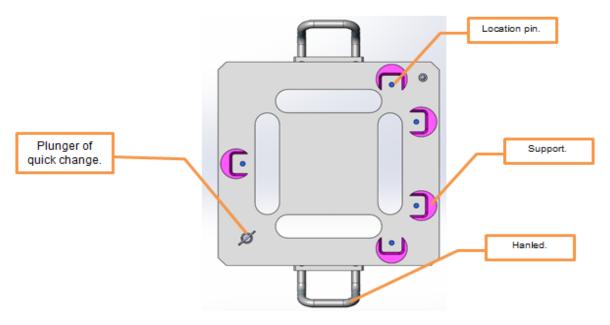


Figura 68.- Tooling para colocación de BMC.

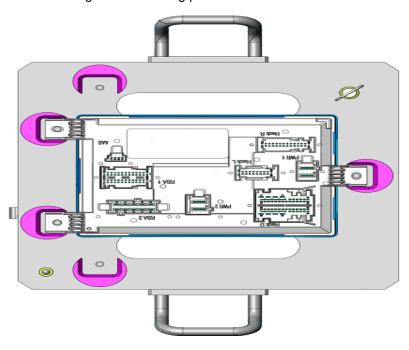


Figura 69.- Tooling cargado con Producto BMC versión Rear.

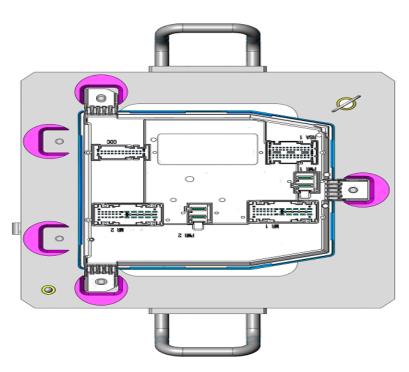


Figura 70.- Tooling cargado con Producto BMC versión Front.

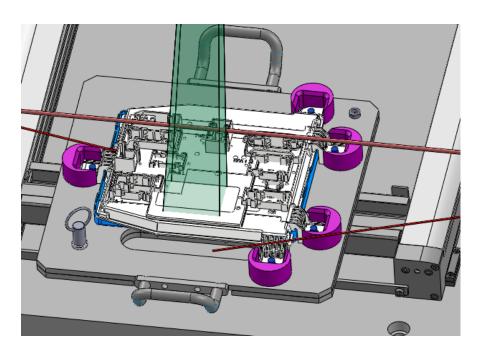


Figura 71.- Sistema en operación.

Tabla 45.- tabla de especificaciones del Tooling.

Propiedades de masa de 1400-1108-1-S11 Configuración: Sin tornilleria Sistema de coordenadas: -- predeterminado --

Masa = 2334.84 gramos

Volumen = 756373,39 milímetros cúbicos

Área de superficie = 284319.84 milímetros cuadrados

CAPITULO IV

Análisis de resultados

El diseño descrito en el capítulo anterior paso por varios proceso de validación con el Cliente HELLA AUTOMOTIVE, ya que en todo el proceso de diseño el cliente debe seguir la evolución del diseño para que la maquina como tal cumpliera con los objetivos demandados por el cliente, esto con el objetivo de hacer más sencillo el trabajo del operador, la seguridad y ergonomía en el área de trabajo.

Todas las piezas que se maquinaran para este diseño llevan tratamiento superficial para evitar desgaste y corrosión, las piezas son de alucobond antiestático, lexan, aluminio 4041T, acero inoxidable 304 2B, acero SAE 1018, acero SAE 01, Acero SAE 4140T, Acero A36 y Acero SAE 1045, dependiendo del material varia el tratamiento cada una de las piezas, estos tratamientos pueden se anodizado natural, pavonado, cincado natural, etc. Estos están especificados en los planos de fabricación de las piezas. Ver anexos.

Como tal el diseño de la maquina es bastante sencillo, básicamente se trata en la integración del Tooling en el Gantry de Festo, y como se menciona en el planteamiento lo que se pretende es automatizar todo el sistema para que se tenga una mayor producción y más calidad del producto.

Se pretende que la máquina-operador tengan un tiempo ciclo de trabajo de 30 segundos por pieza, y que la maquina opera con una eficiencia del 95% de su capacidad.

CAPITULO V

Marco referencial

5.1 Descripción de la empresa u organización

5.1.1 Antecedentes de la empresa

La empresa ha operado en Querétaro desde hace 10 años. Sus oficinas e instalaciones están ubicadas en la Carretera Estatal 431 Km. 2+200 Lote 45, Parque Tecnológico Innovación Querétaro, QRO. C.P.76246. La planta cuenta con un área total de 3000 m2 actualmente laborando un total de 54 empleados. Tienen cuatro clientes principales que son: CYATEQ, AUTOLIV, SINCI, HELLA ELECTRONICS, SMR AUTOMOTIVE, WOCO TECH, INTEVA, MAGNETI MARELLI, CONTINENTAL, ZKW, ETC. Es así como ingeniería de proyectos es una empresa cuya misión es crear y desarrollar soluciones de automatización e ingeniería para los procesos de ensamble y estaciones de pruebas en las líneas de producción de las empresas del ramo automotriz.

5.1.2 Misión

Mondragón Assembly S. A. de C. V. se caracteriza por ser una organización basada en las personas, cuya misión radica en la automatización de procesos de montaje, orientación y estrecha colaboración de nuestros clientes, buscando la cercanía al mismo, la identificación y compromiso con sus necesidades reales, la calidad del producto y servicio y el compromiso en los resultados; dirigiéndonos, principalmente, a los sectores de auto partes y otros sectores emergentes.

5.1.3 Visión

Aportar en el mercado soluciones rentables e idóneas a las necesidades de automatización en los procesos de montaje, aplicando sistemas y tecnologías experimentadas y de fiabilidad contrastada, situándonos como claros referentes en nuestra actividad.

5.1.4 Valores

Orientados al cliente: midiendo nuestro éxito por el de nuestros clientes.

- Actuar y trabajar con integridad y ética
- Calidad en nuestro trabajo diario, siempre buscando la mejora continua.
- Liderar con el ejemplo.
- Trabajo en equipo.

5.1.5 Política de calidad

Los que laboramos en INGENIERÍA DE PROYECTOS nos comprometemos a cumplir los requisitos de nuestros clientes y los objetivos del sistema de calidad de acuerdo con los métodos establecidos, mediante la buena práctica profesional de todo el personal en las integraciones eléctricas ofrecidas a nuestro alcance, además todos los proyectos están desarrollados bajo las normatividades que regulan el ramo.

5.1.6 Organigrama y lay out

Organigrama

En la siguiente figura se muestra el organigrama de la empresa INGENIERÍA DE PROYECTOS.

Figura 72.- Organigrama de puestos de Mondragón Assembly México

Lay out

A continuación veremos la distribución de cada una de las área de Mondragón assembly México.

Planta baja

- Oficina técnica
- Sala de juntas interna (x3)
- Sala de junta de proveedores (x1)
- Sala de juntas clientes (x4)
- Baños oficina
- Site
- Archivo
- Baños cliente
- Vestidores y baños taller
- Sala de limpieza
- Enfermería
- Taller
- Área de maquinados
- Almacén
- Área de maquinados

Planta alta

- Cocina
- Comedor

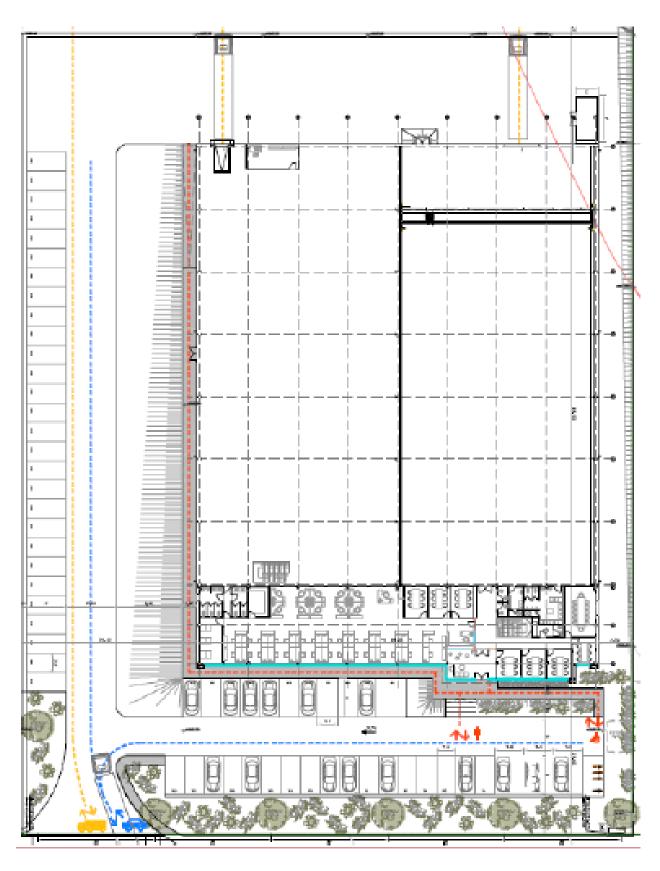


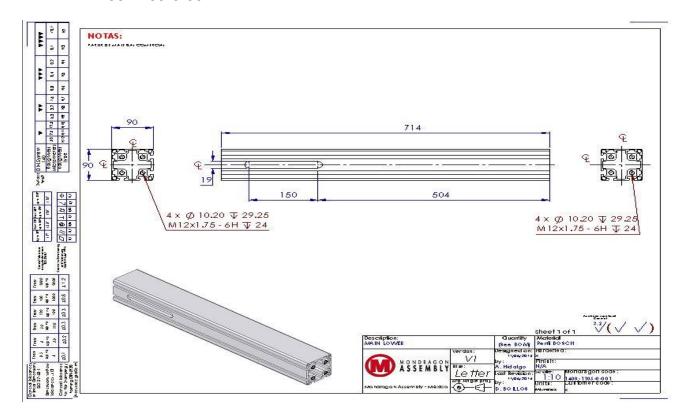
Figura 73.- Lay out de las instalaciones de Mondragón Assembly México.

5.7 Campo de desarrollo nacional

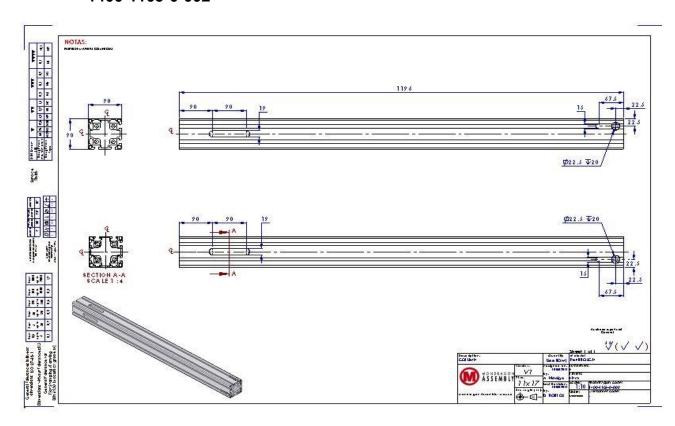
La Ingeniería de proyectos tiene como clientes a empresas que se encuentran en la República Mexicana brindándoles servicios profesionales de automatización, control e ingeniería eléctrica en la industria de las autopartes, desarrollando soluciones de automatización e ingeniería para los procesos de ensamble y estaciones de pruebas en las líneas de producción de las empresas del ramo automotriz nacional.

5.8 Proceso general de producción

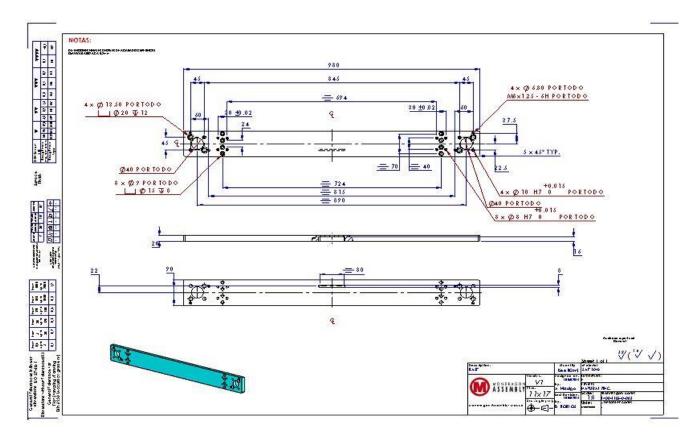
No aplica, porque es una empresa dedicada a dar soluciones ingenieriles en área de control y automatización.

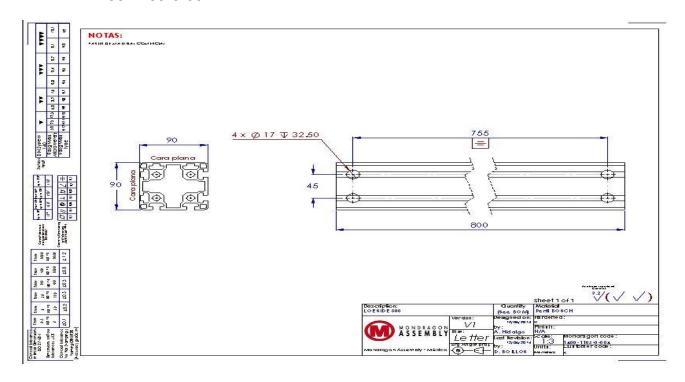

CONCLUSIÓN

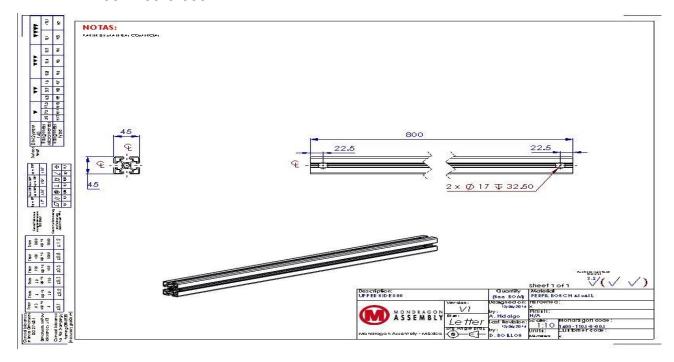
En ingeniería el diseño mecánico es el proceso de dar forma, dimensiones, materiales, tecnología de fabricación y funcionamiento de una máquina para que cumpla unas determinadas funciones o necesidades, por lo que lo aprendido durante este proyecto es a integrar distintos componentes que a su vez en conjunto trabajan sincronizados para un mismo fin, el diseño mecánico trata de automatizar todos los procesos para que tengamos una mejor calidad de productos y aumente la producción, tomando en cuenta que gracias a el diseño podemos obtener certificaciones.

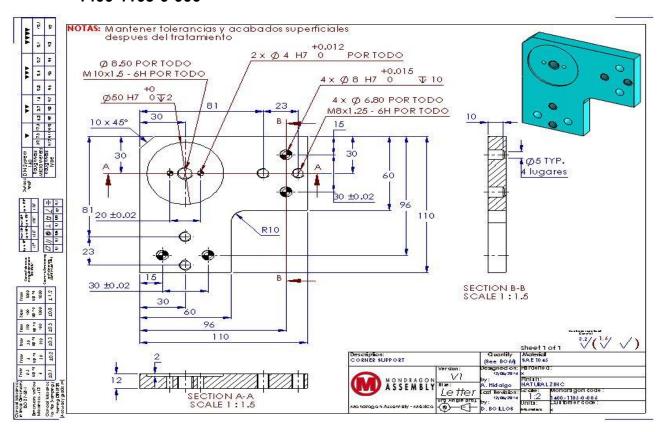

Actualmente el proyecto que se describe se encuentra en otros departamentos que le dan seguimiento, la segunda etapa es montaje después pasa por el departamento de eléctrica y finaliza con programación donde se hacen pruebas de funcionalidad de la máquina, tomando en cuenta que en la parte de diseño sigue presente hasta la fecha de entrega con el cliente.

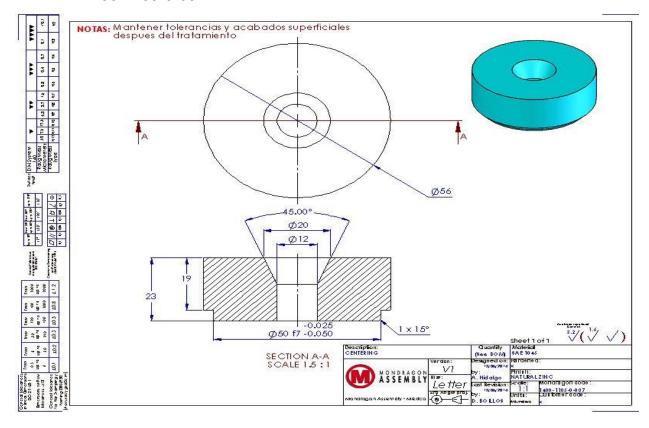
Anexos


• 1400-1105-0-001

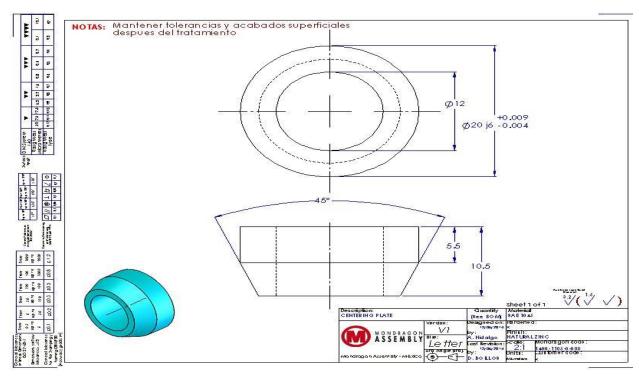

1400-1105-0-002

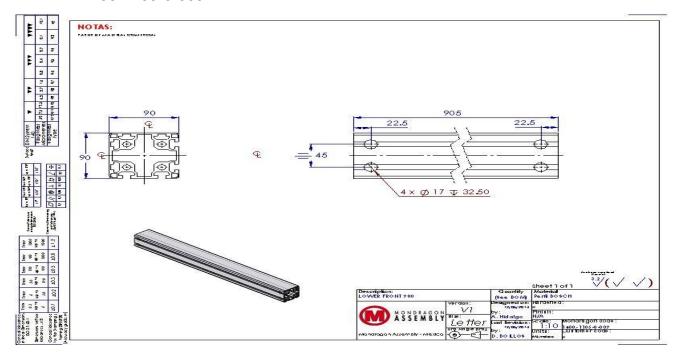


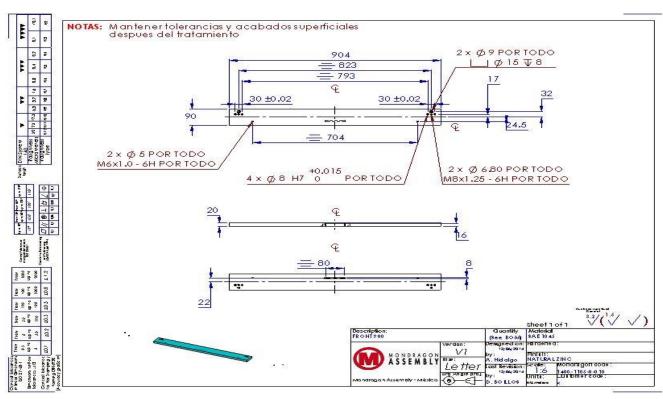

• 1400-1105-0-003

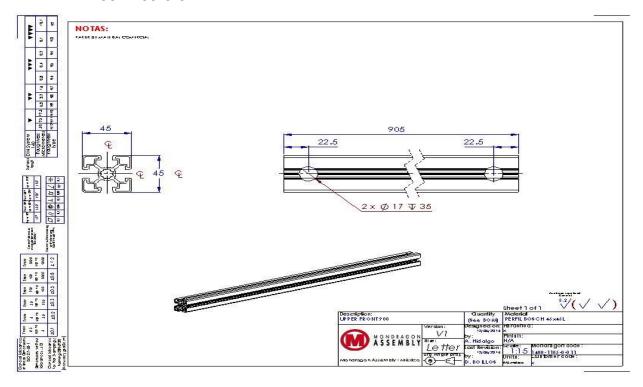


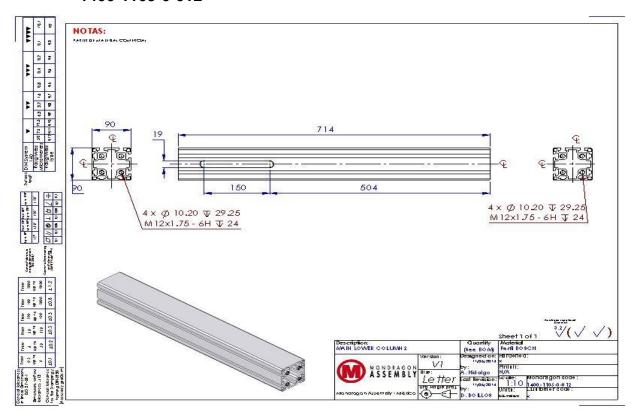
1400-1105-0-004

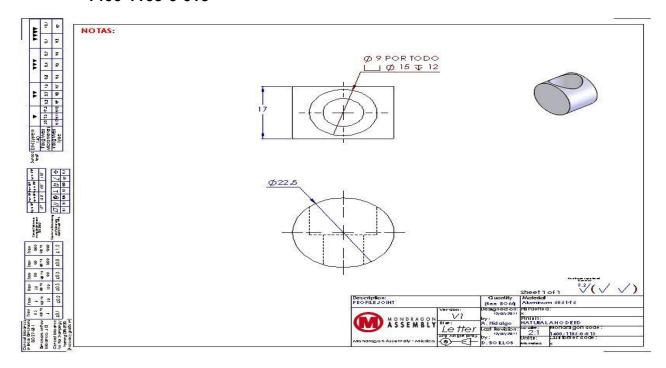


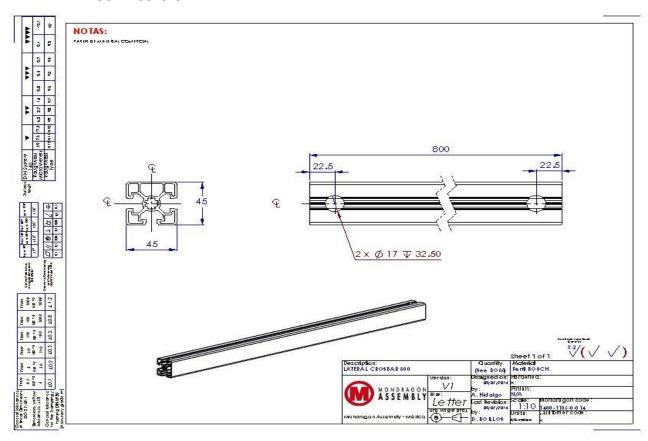


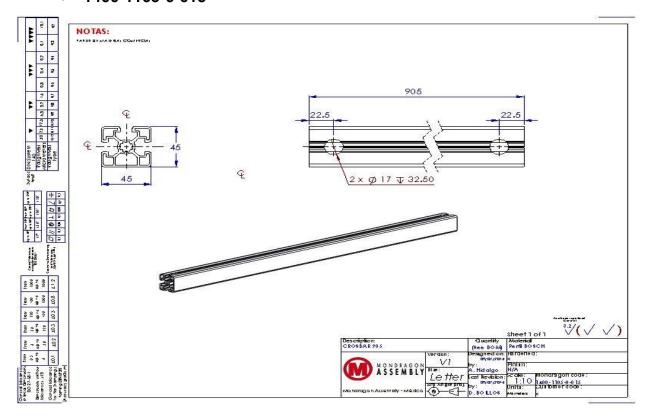


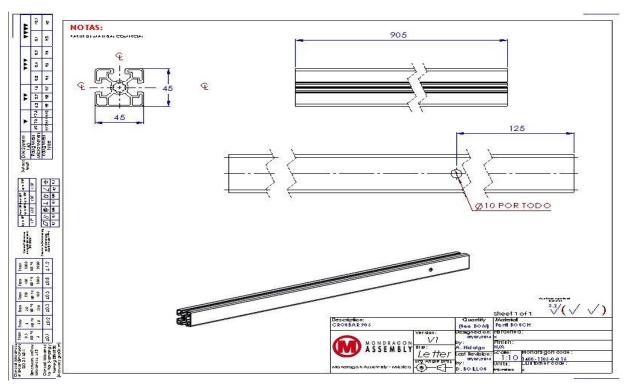

1400-1105-0-008

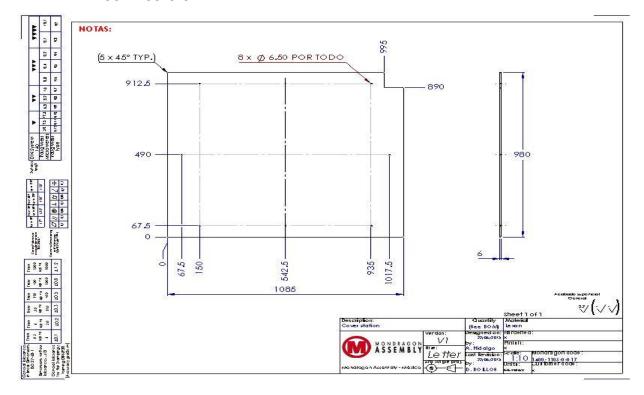


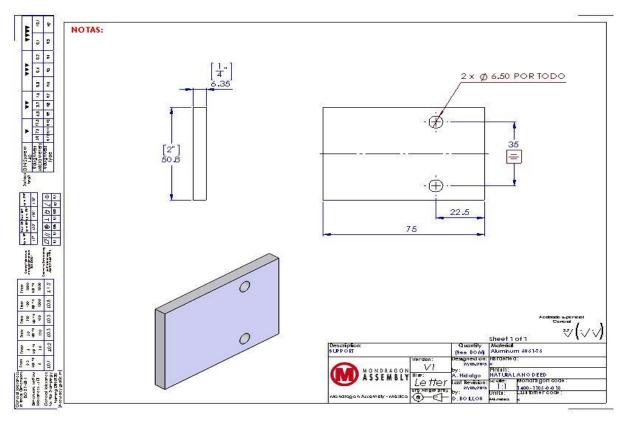


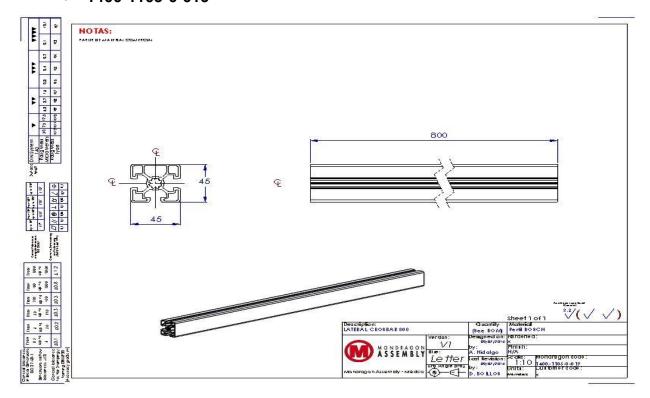

1400-1105-0-010

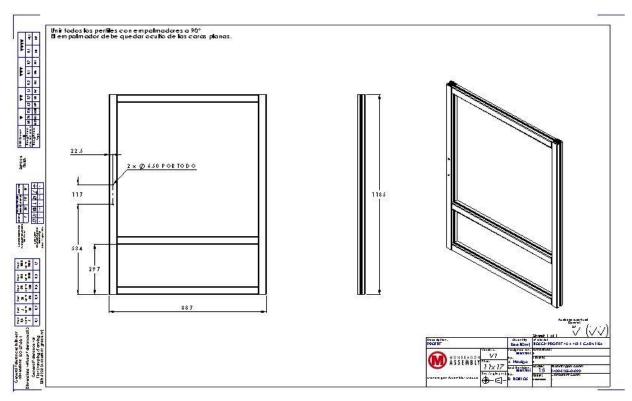


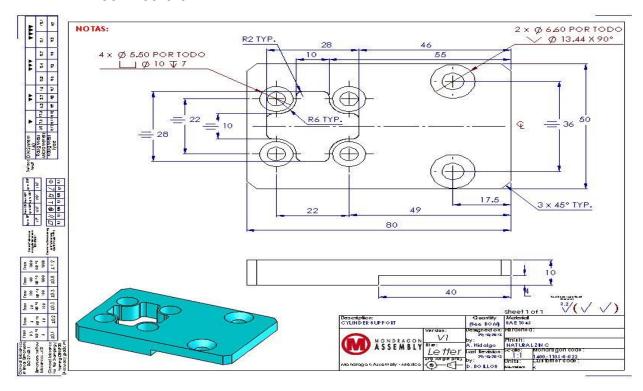


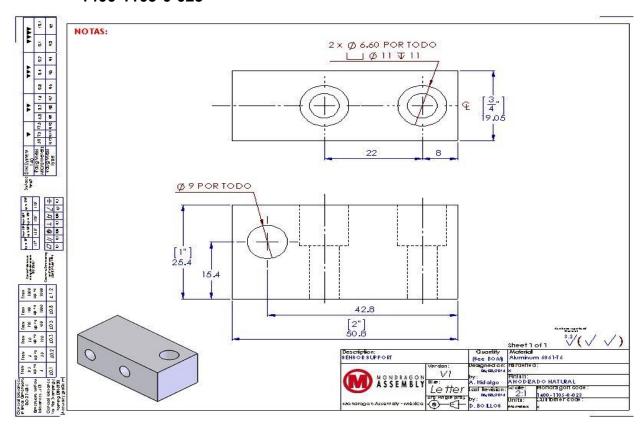


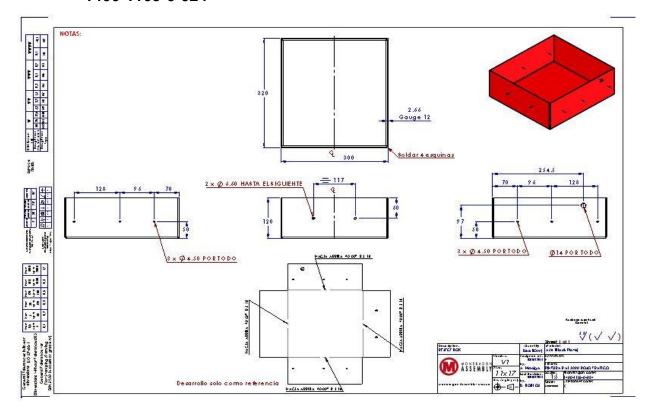


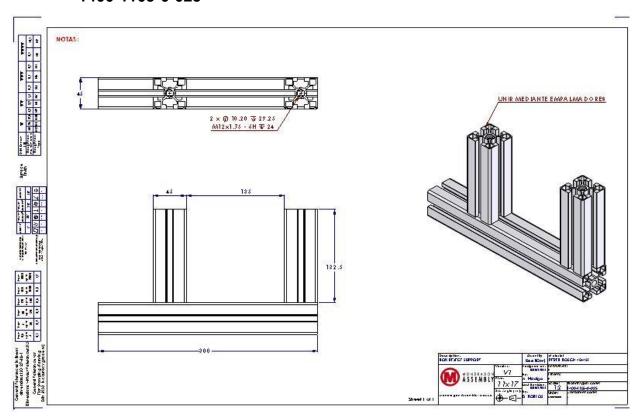


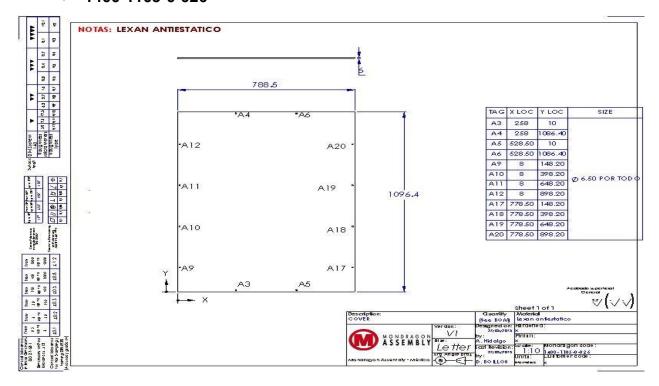


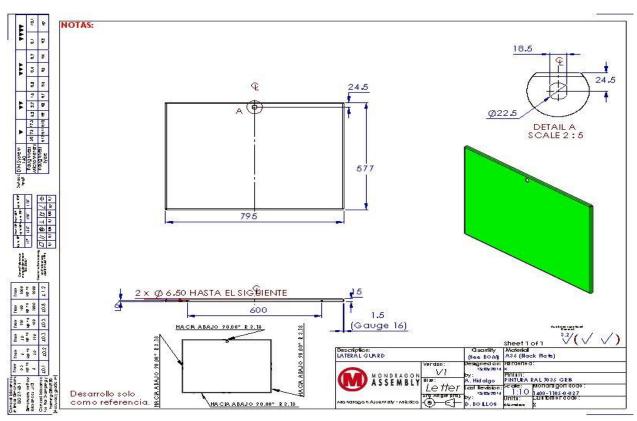


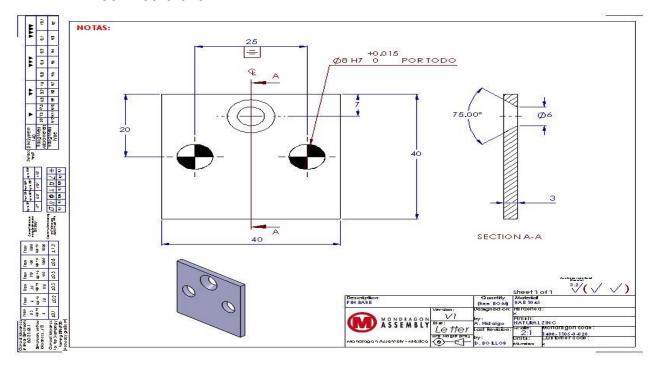


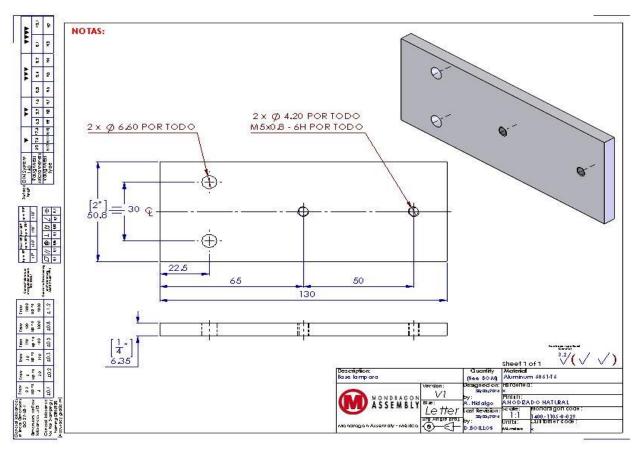


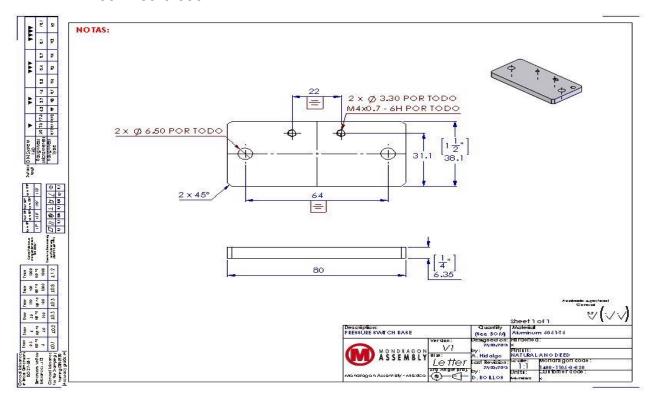

1400-1105-0-020

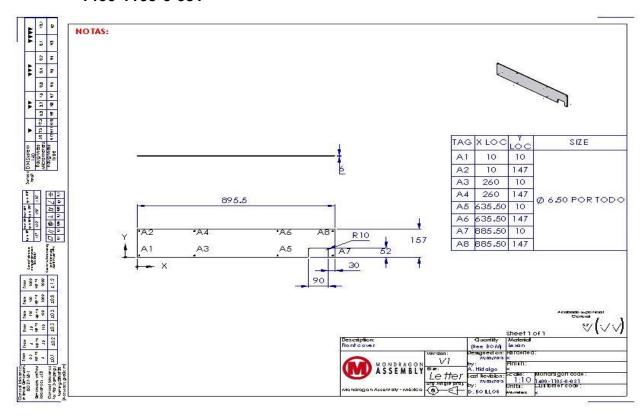


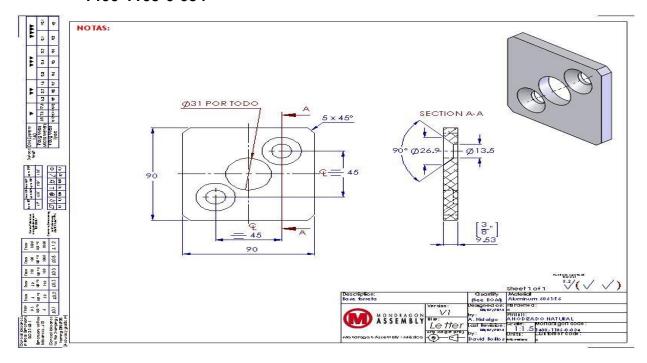


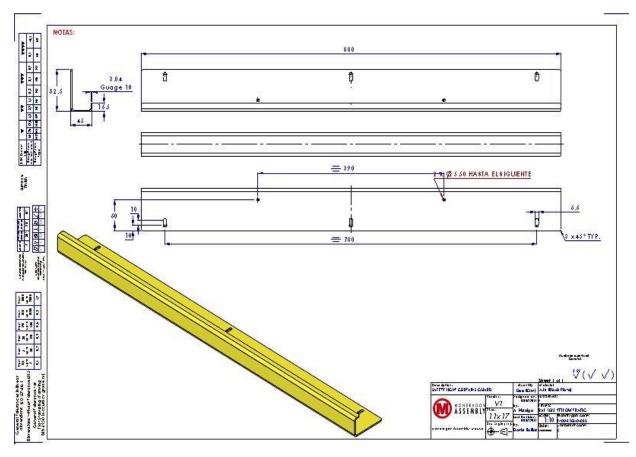


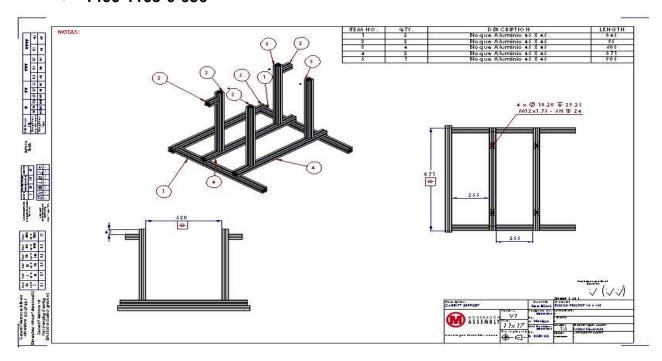


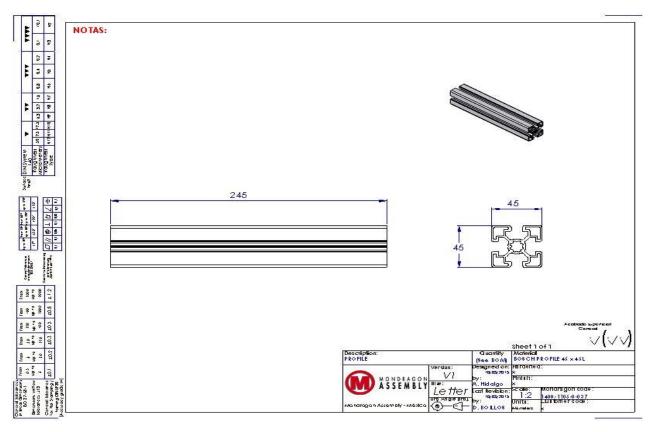


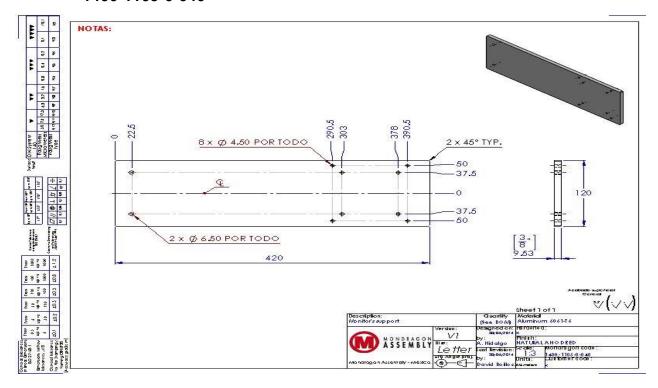

1400-1105-0-027

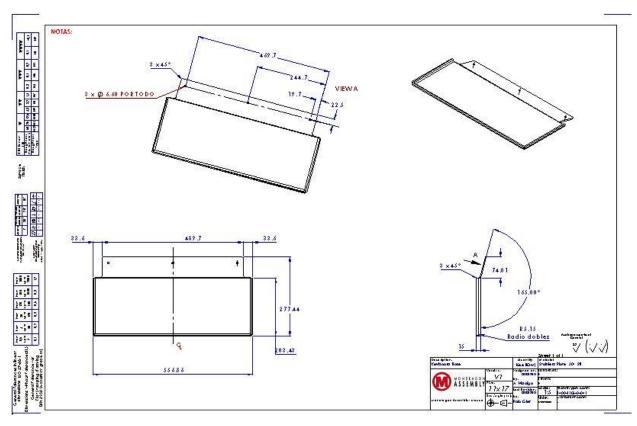


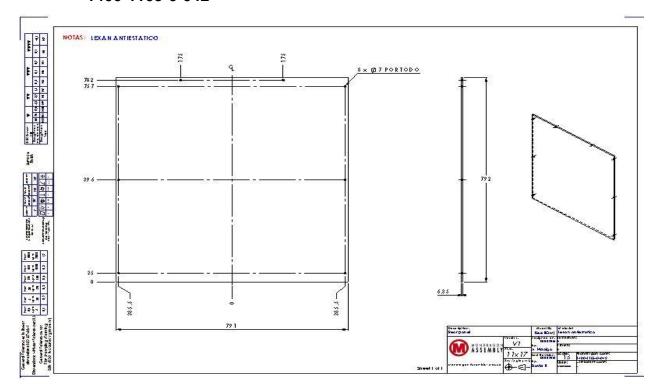




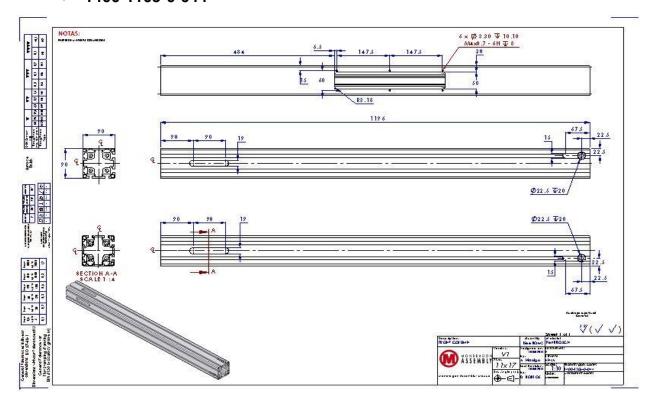


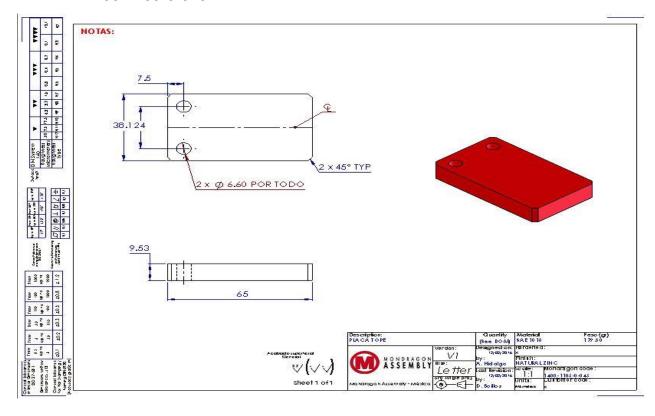


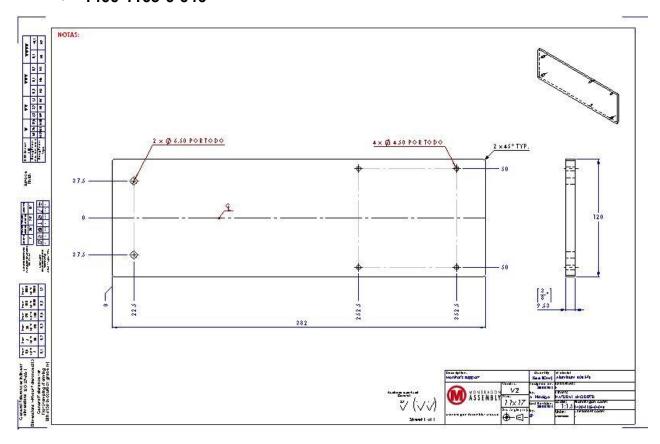

1400-1105-0-035

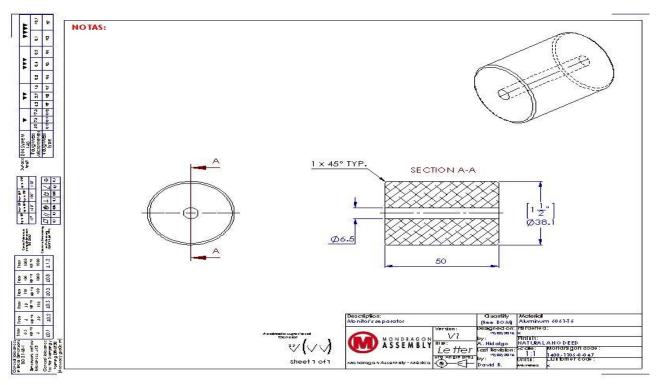


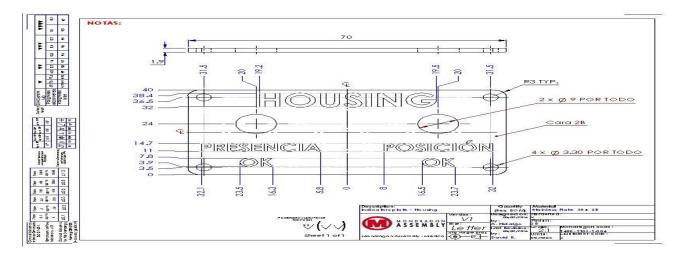


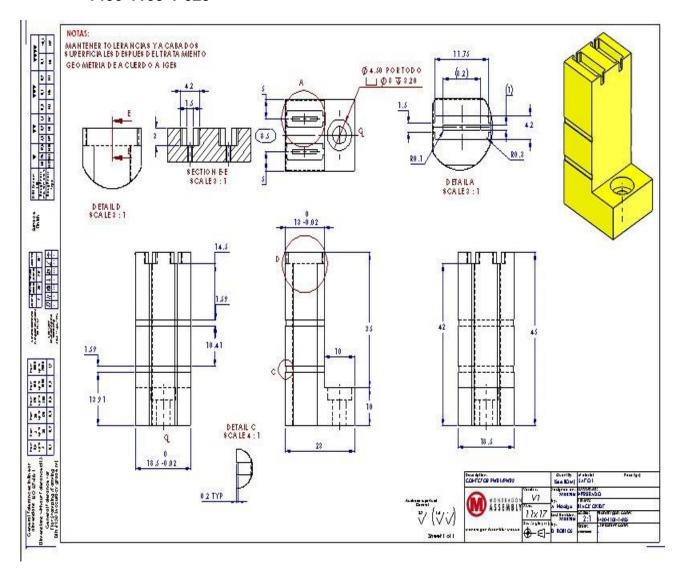


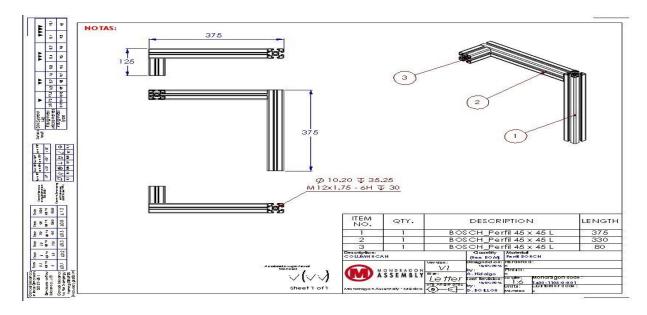


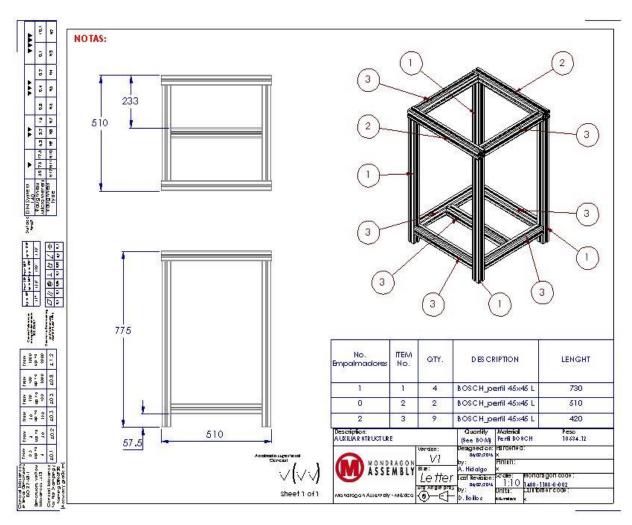


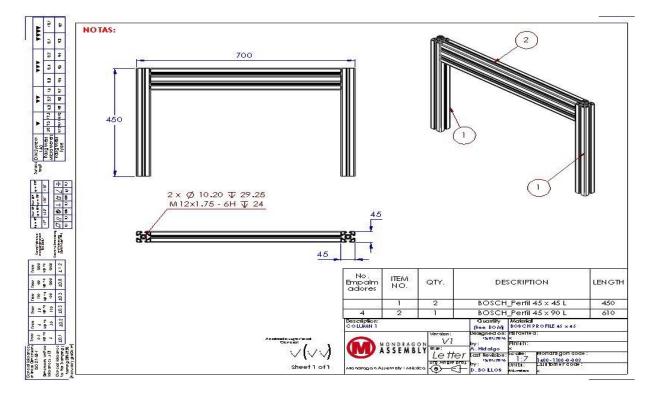


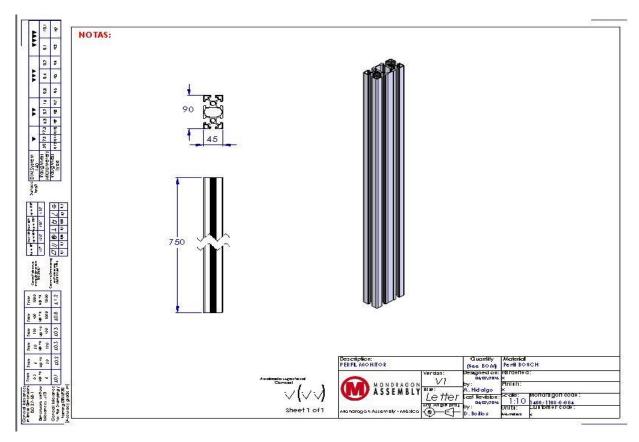


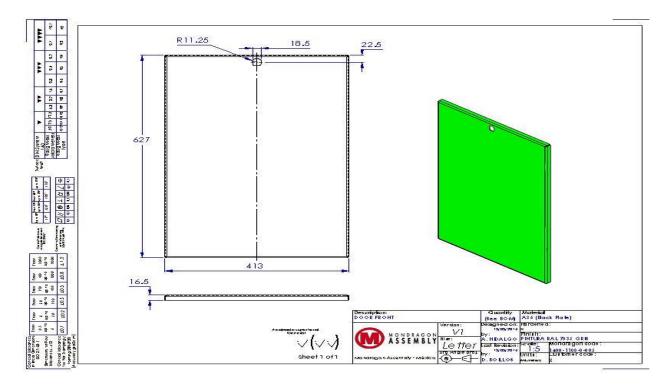


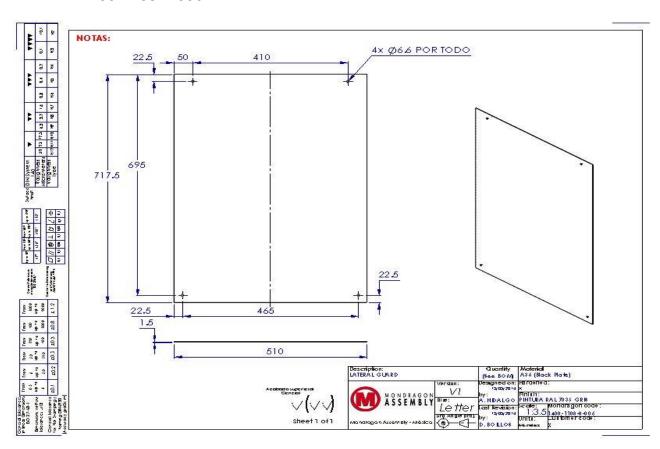

1400-1105-0-047

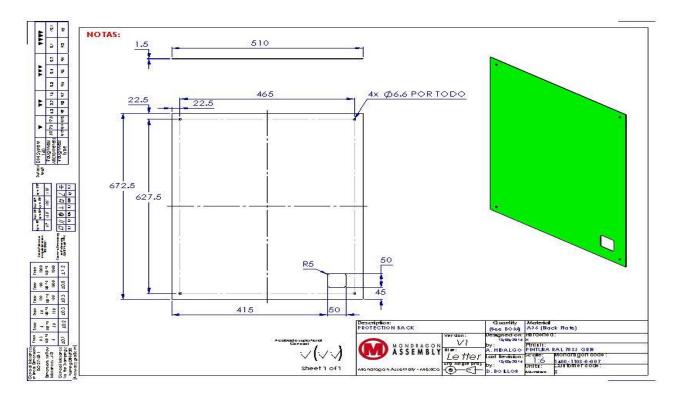


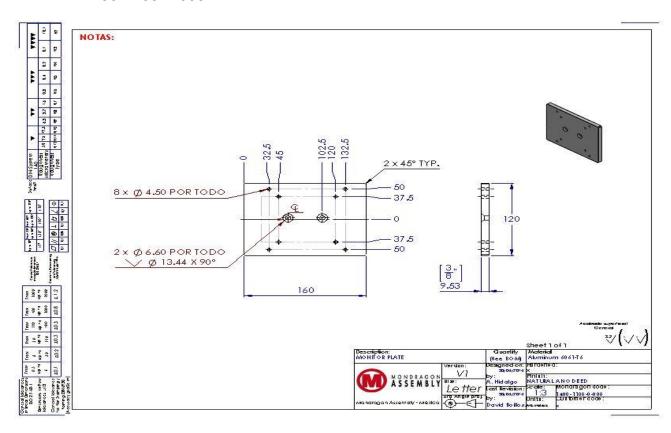


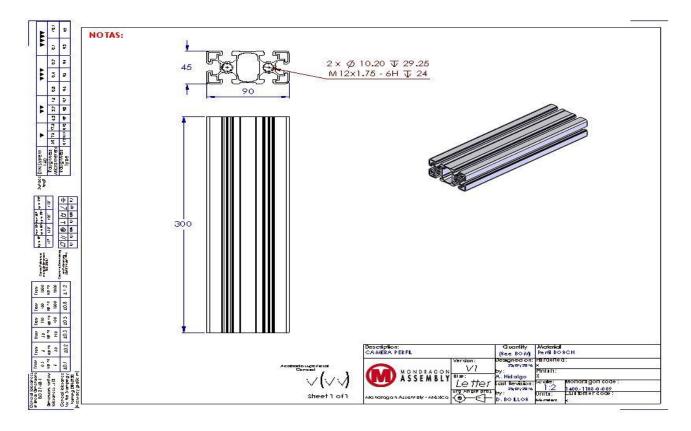

1400-1105-1-025

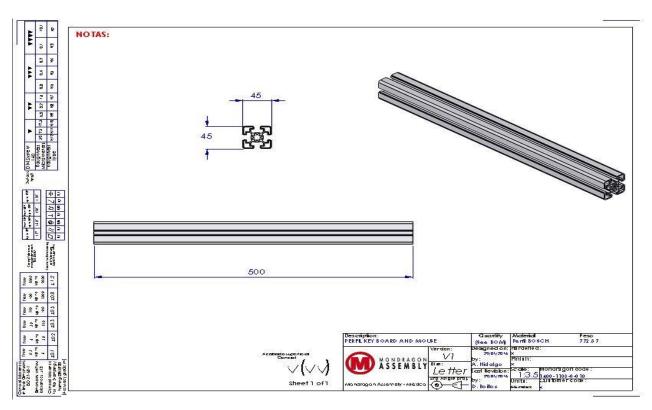


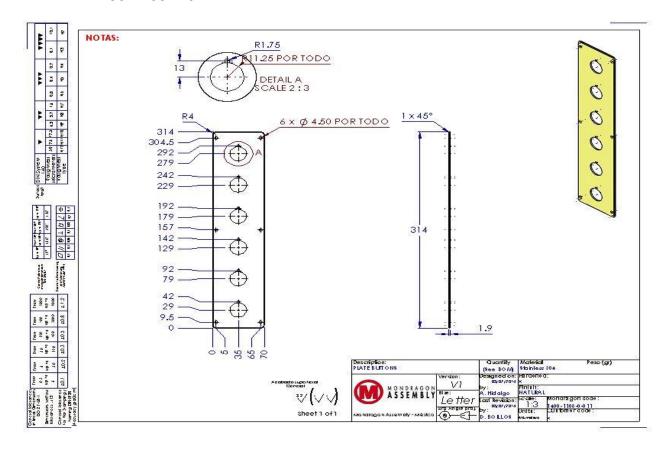


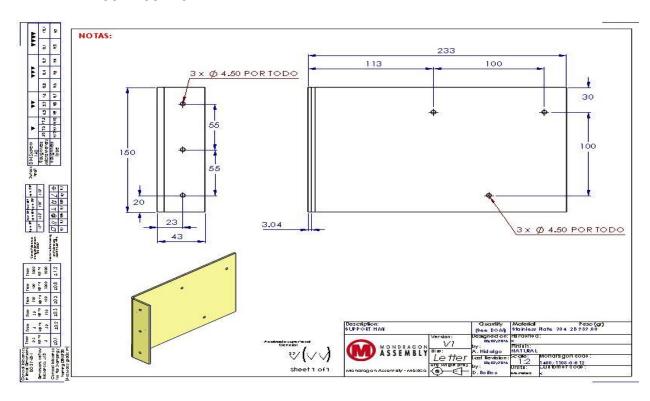


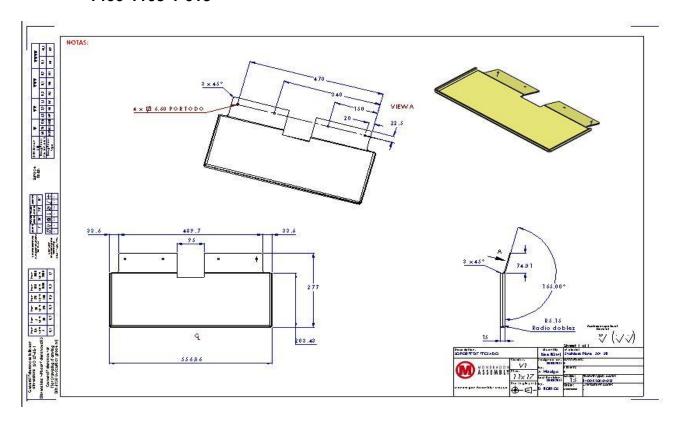


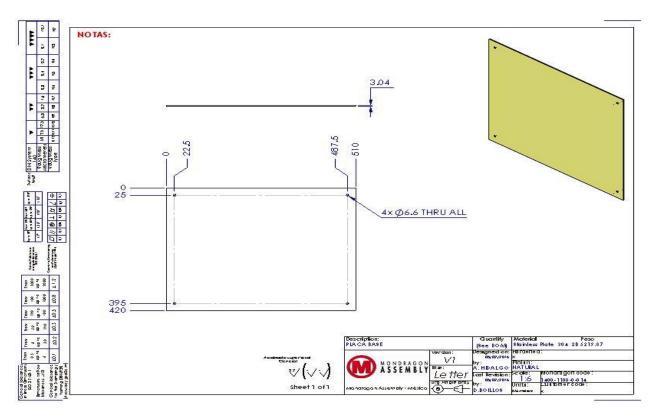


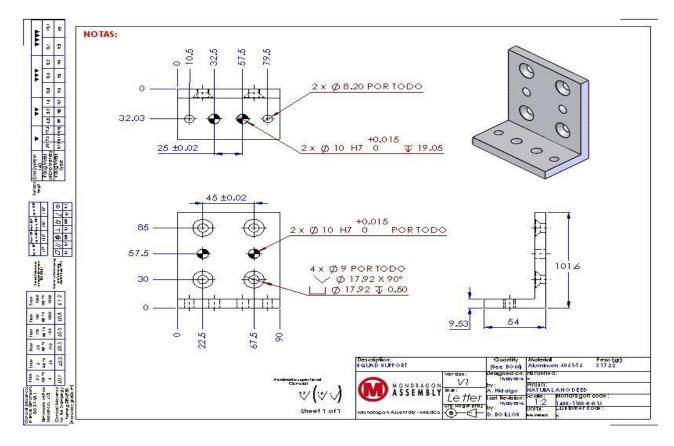


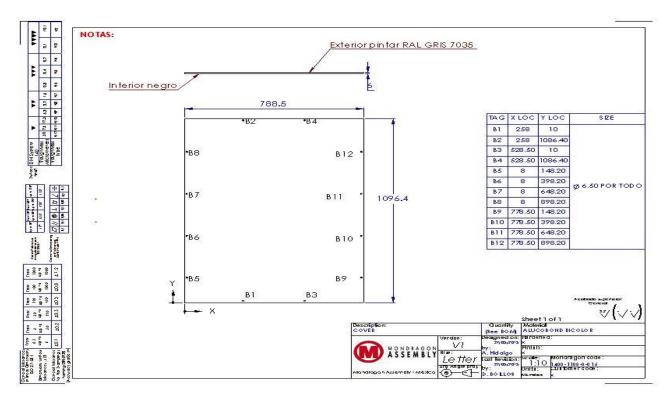


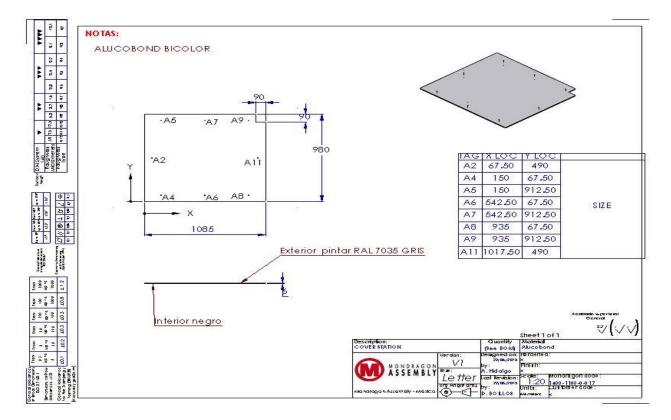


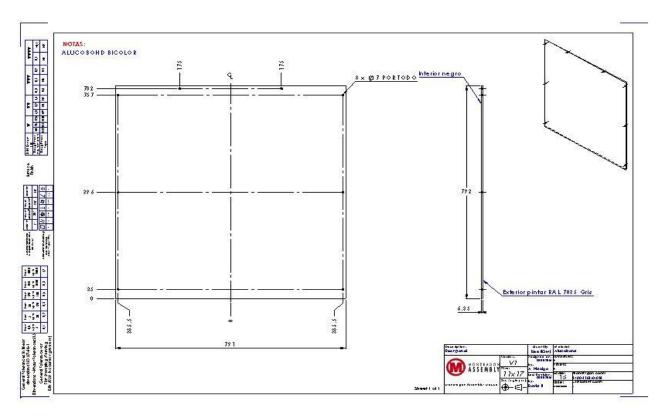


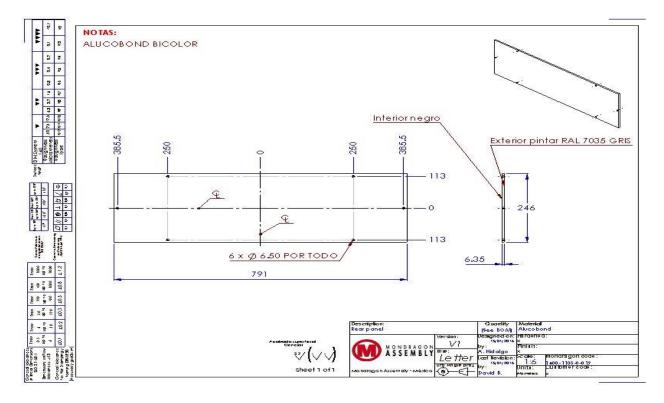


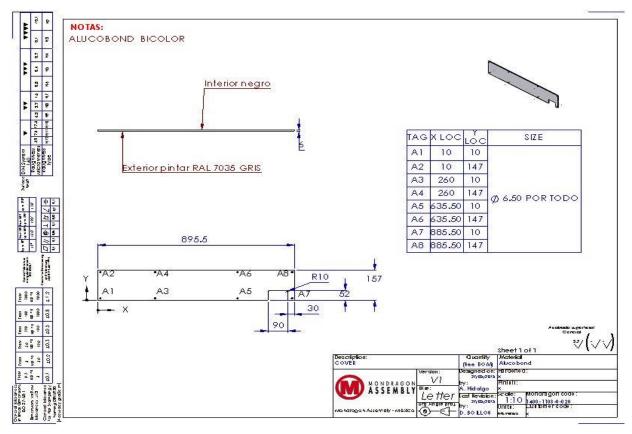


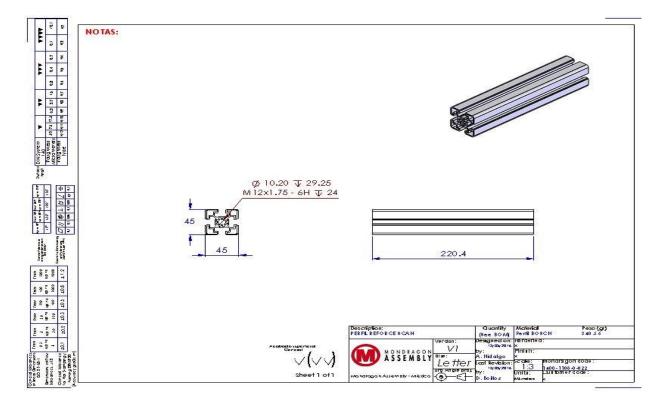


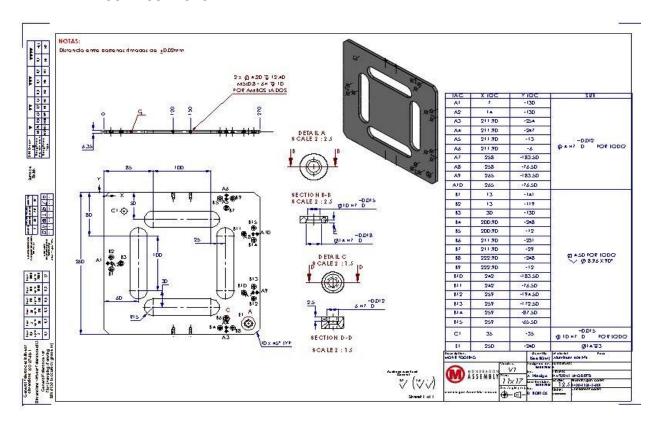


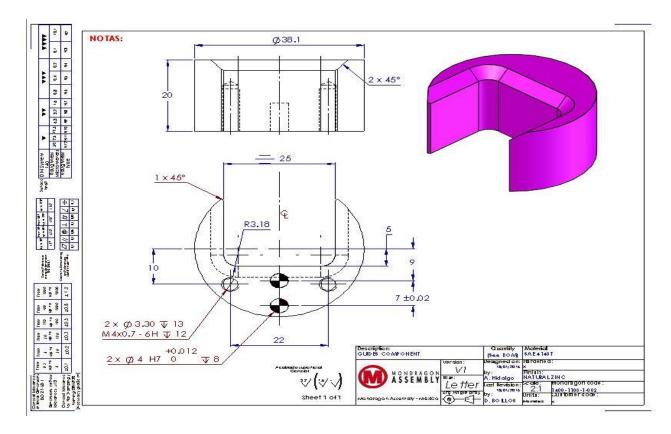


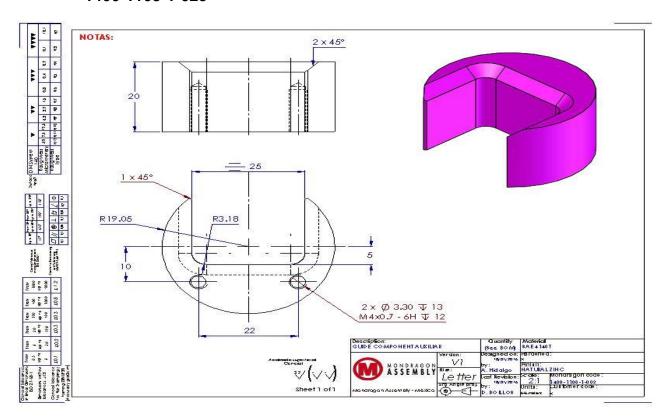


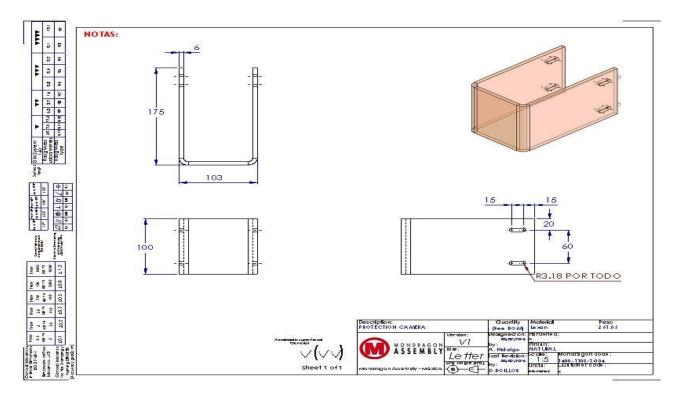


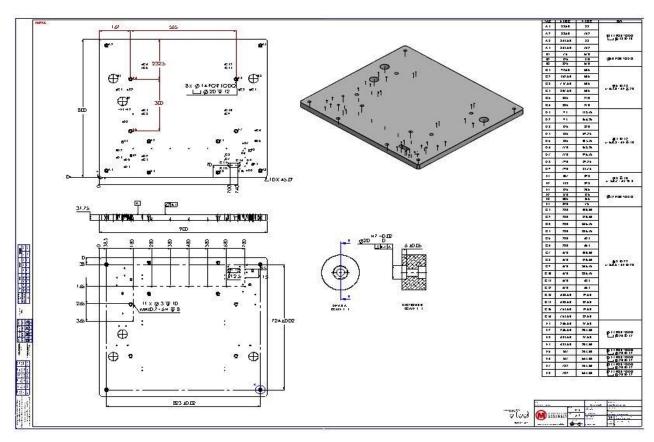


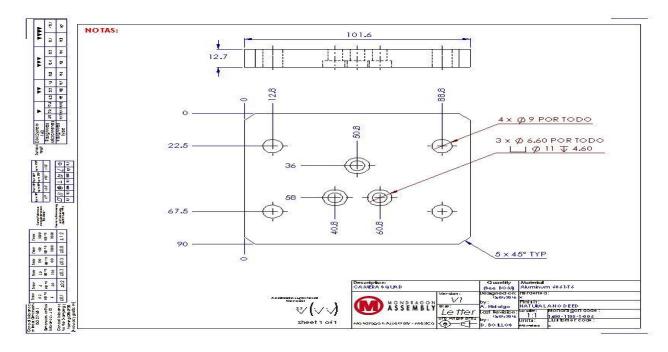


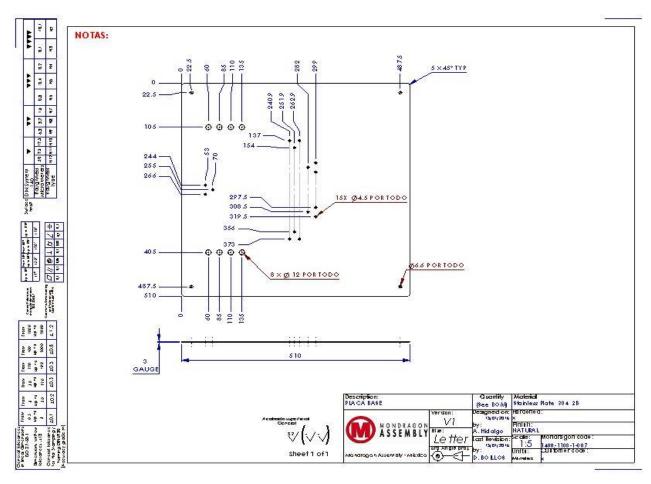


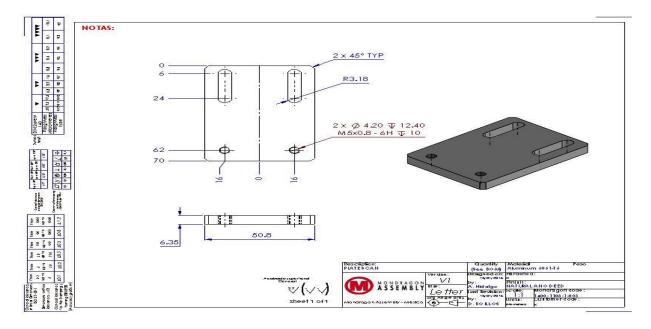


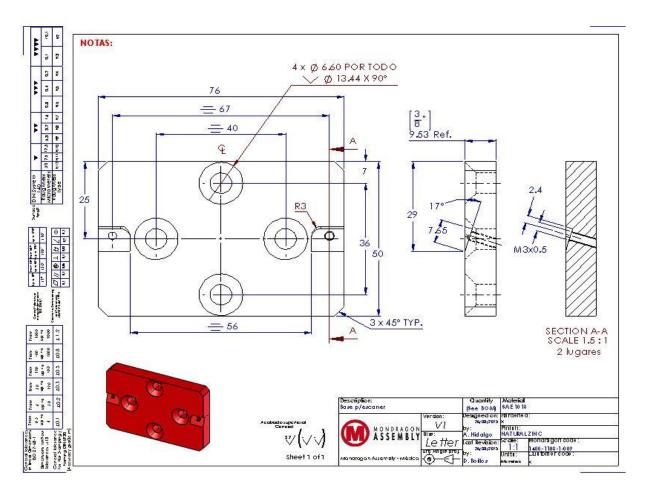


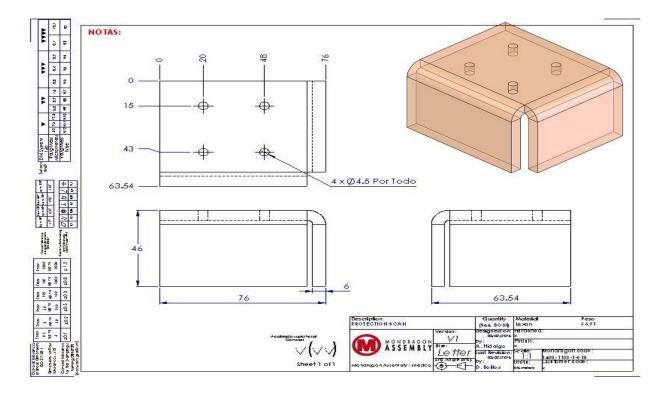


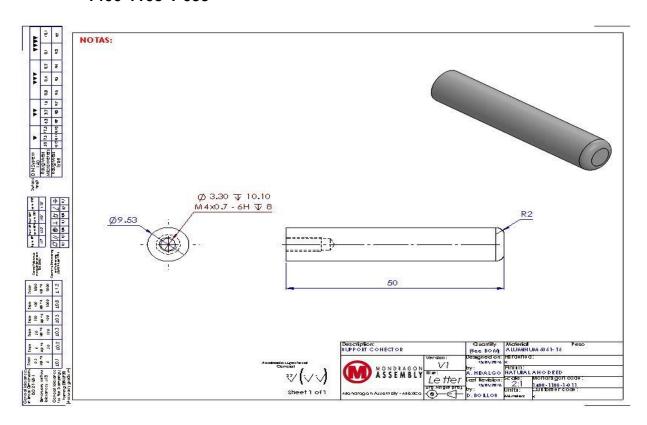


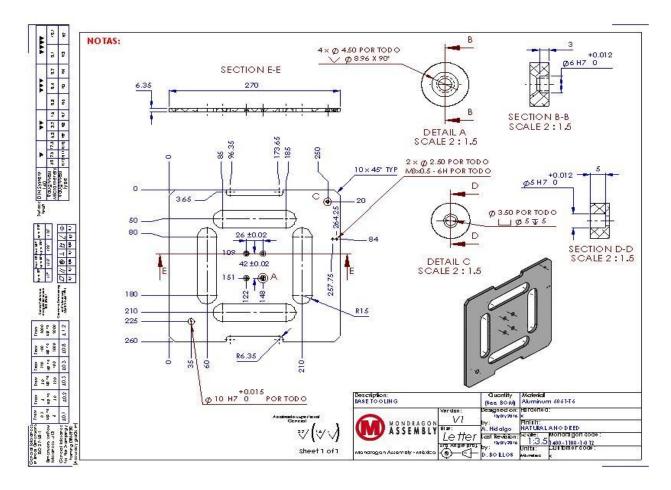


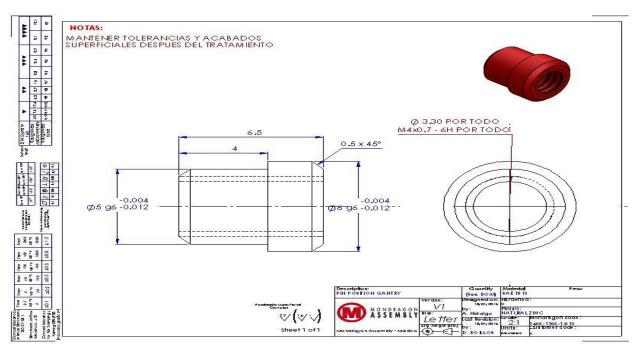


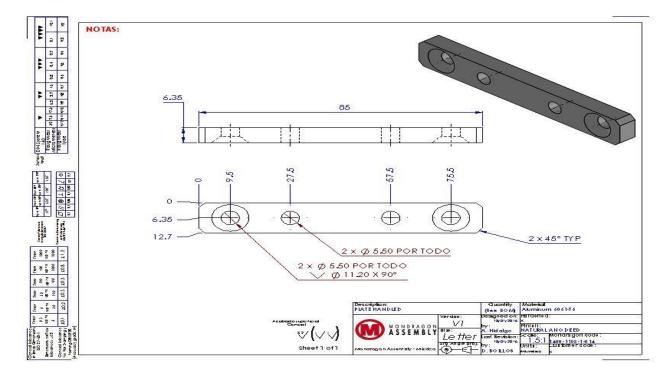


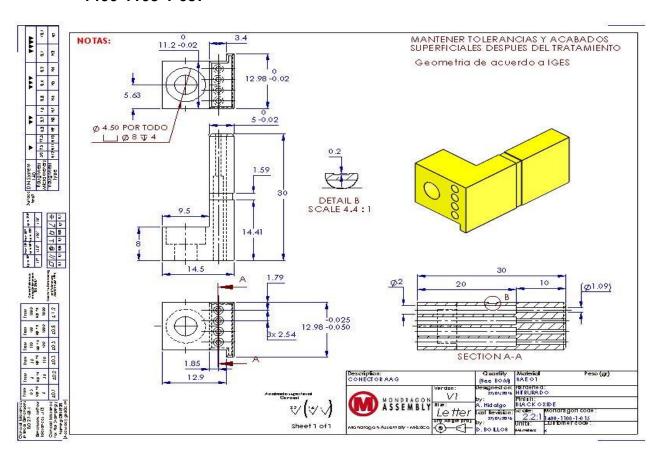


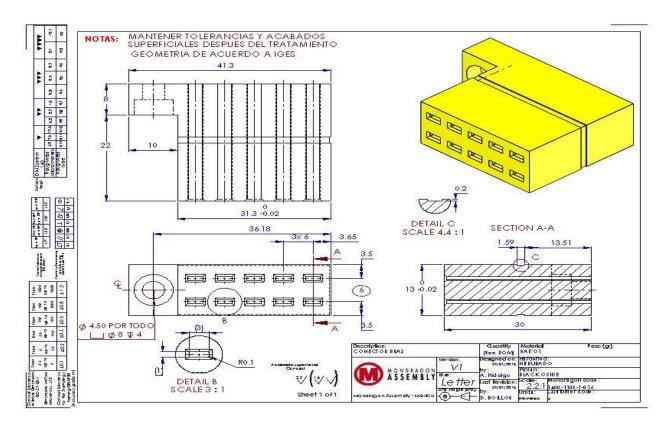


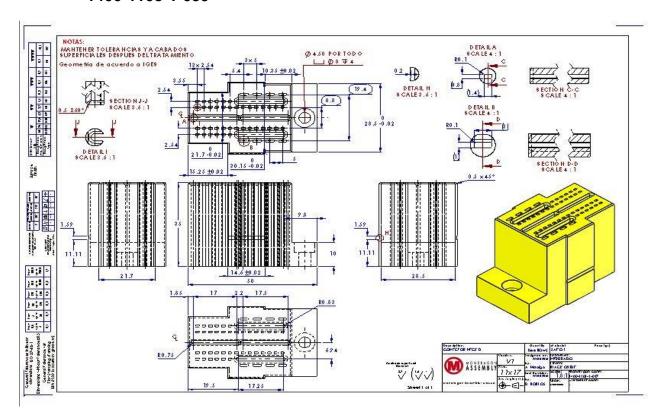


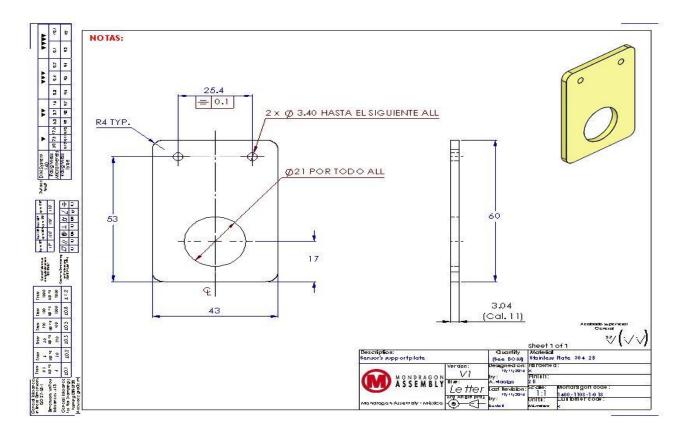


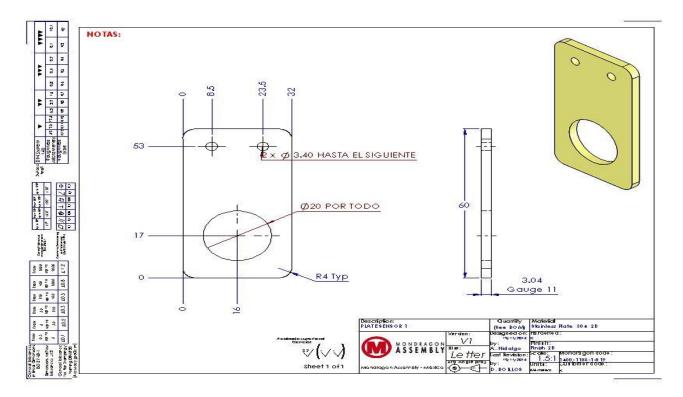


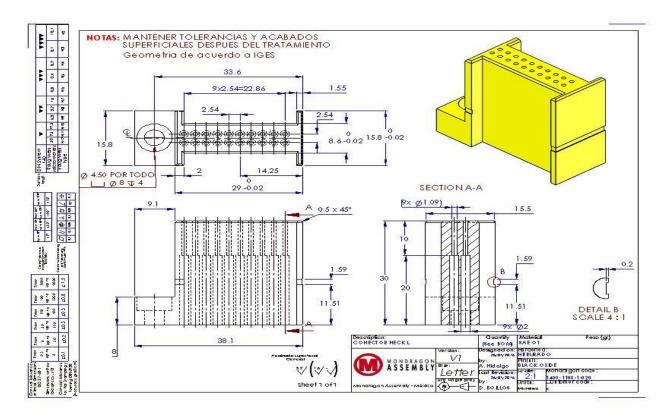


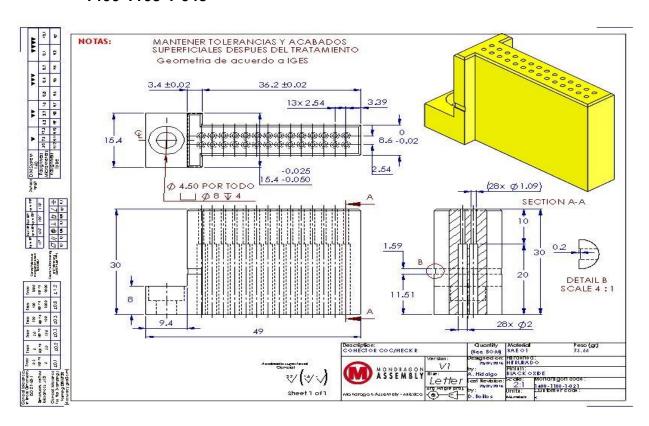


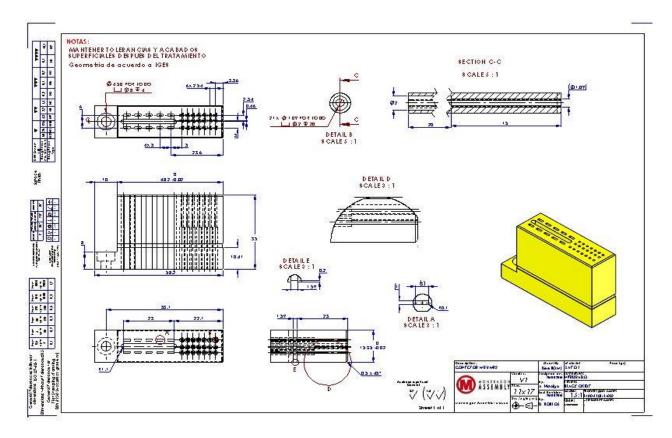

• 1400-1108-1-035

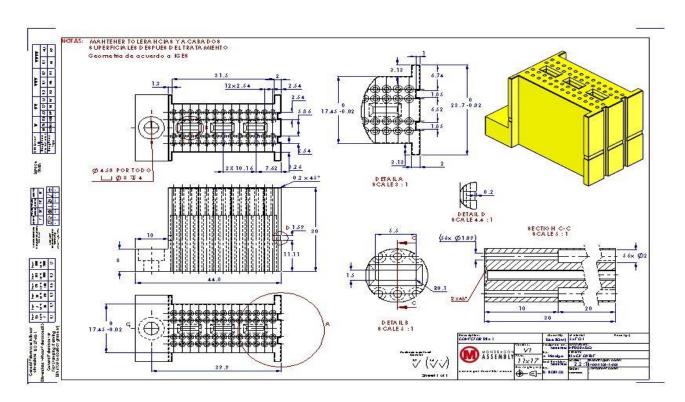


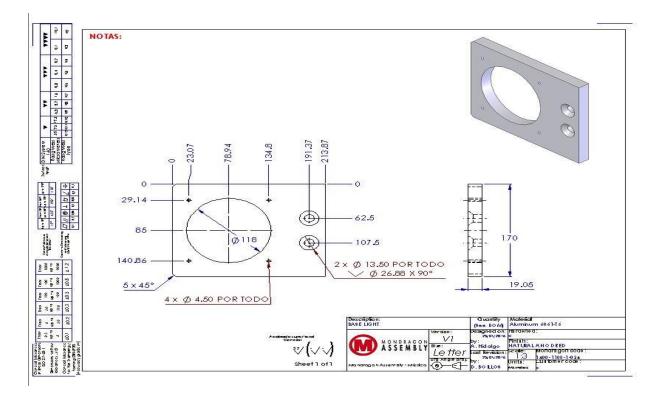


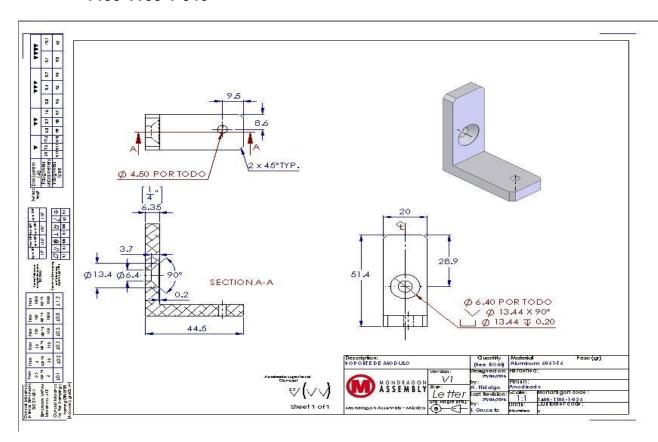


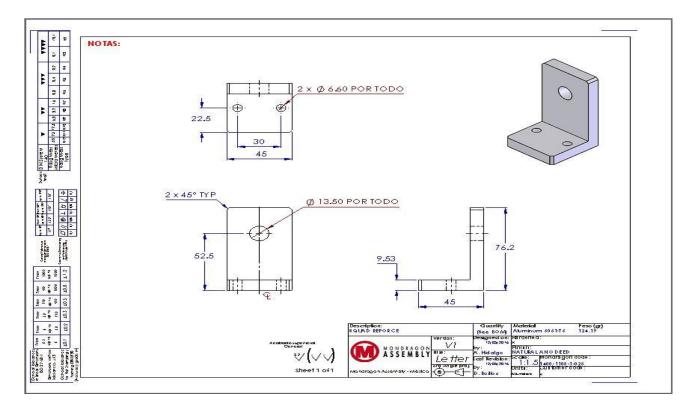


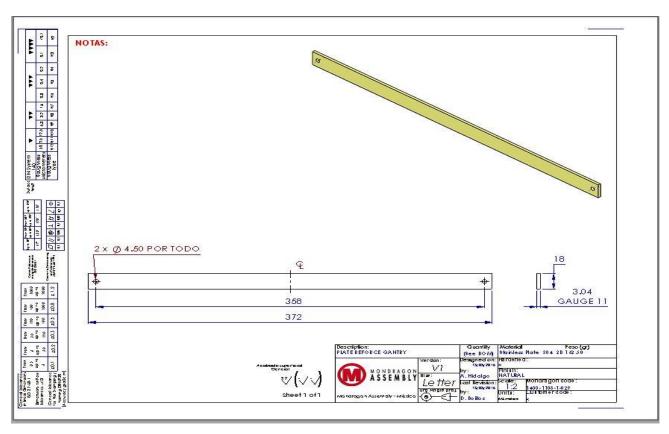


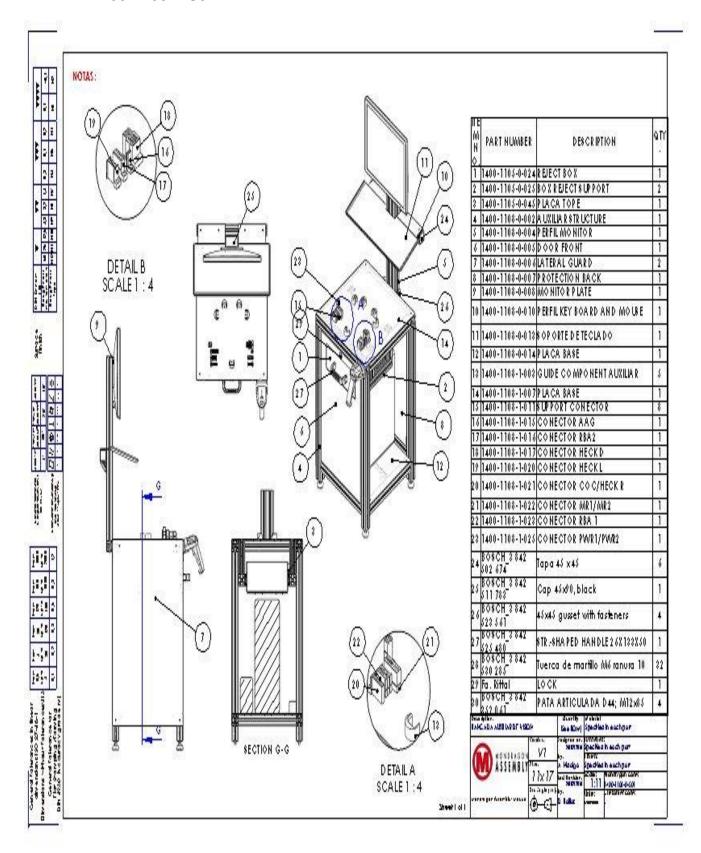


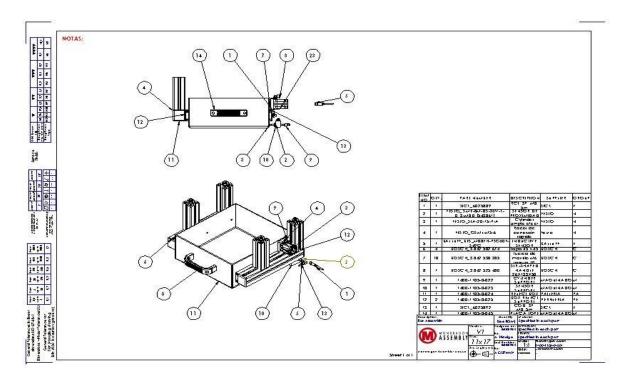












• 1400-1108-1-048

Referencias

- 24/06/2016. Recuperado de http://www.balluff.com/balluff/MMX/es/home.jsp.
- 24/06/2016. Recuperado de http://www.cognex.com/.
- 24/06/2016. Recuperado de http://www.bannerengineering.com/en-US/support/partref/75669.
- 24/06/2016. Recuperado de https://www.festo.com/net/es-mx_mx/SupportPortal/InternetSearch.aspx.
- 24/06/2016. Recuperado de http://www.balluff.com/balluff/MMX/es/products/product_detail.jsp#/158187
- 24/06/2016. Recuperado de http://w3.siemens.com/mcms/human-machine-interface/en/special-hmi-devices/inox-devices/mp277-inox/Pages/Default.aspx#Area_20of_20application
- 24/06/2016. Recuperado de://www.alliedelec.com/banner-engineeringtl50gyrq/70167757/
- 24/06/2016. Recuperado de https://www.festo.com/cat/es-mx_mx/xDKI.asp
- 24/06/2016. Recuperado de http://mexico.newark.com/bannerengineering/slpp25-830p88/light-curtain/dp/10R5348
- 24/06/2016. Recuperado de http://www.bannerengineering.com/esMX/search?k=VTBP6BLQ&search_ty pe=all&x=0&y=0
- 24/06/2016. Recuperado de http://rittal.com/es-es/product/list/variations.action?productID=PRO0023
- 24/06/2016. Recuperado de http://usa.balluff.com/manuals/BNI%20Network%20Blocks/ProfiBus%20Blocks/BNI%20PBS-502-000-Z001_EN(SG).pdf
- 24/06/2016. Recuperado de https://www.festo.com/net/es-mx_mx/SupportPortal/InternetSearch.aspx
- 24/06/2016. Recuperado de http://www13.boschrexroth-us.com/framing_shop/product/view_product.aspx?partnumber=3842523570

- 24/06/2016. Recuperado de http://www13.boschrexrothus.com/Framing_Shop/Product/View_Product.aspx?category=10104&subca tegory=1
- 24/06/2016. Recuperado de http://www13.boschrexrothus.com/Framing_Shop/Product/View_Product.aspx?category=10801&subca tegory=2
- 24/06/2016. Recuperado de http://uk.misumi-ec.com/vona2/detail/110300133120/?HissuCode=JBH6-8
- 24/06/2016. Recuperado de http://uk.misumiec.com/vona2/detail/110302244840/?HissuCode=BLPS6-25
- 24/06/2016. Recuperado de https://www.festo.com/net/es-mx_mx/SupportPortal/InternetSearch.aspx?q=164887&tab=14&s=t#result