

INSTITUTO TECNOLOGÍCO DE TUXTLA GUTIÉRREZ

INGENIERIA EN QUÍMICA

"TITULO"

"DETERMINACIÓN DEL PORCENTAJE DE ALMIDÓN EN PASTAS LARGAS PARA VERIFICAR EL BUEN FUNCIONAMIENTO DE LOS INSERTOS EN LA LÍNEA DE PRODUCCIÓN DEL SPAGHETTI, CUMPLIENDO CON LOS ESTÁNDARES DE CALIDAD"

INFORME TÉCNICO DE RESIDENCIA PROFESIONAL

PRESENTA:

LÓPEZ GARCÍA ERNESTO DE JESÚS 13270176

ASESOR INTERNO:

FARRERA ALCAZAR ROCIÓ

ASESOR EXTERNO:

GARCÍA REYNOSO JUAN CARLOS

TUXTLA GUTIERREZ CHIAPAS. A 14 DE DICIEMBRE

ÍNDICE GENERAL	PAG
CAPITULO I: GENERALIDADES DE LA EMPRESA	1
1.1. Antecedentes históricos de la empresa	1
1.2. Misión	2
1.3. Visión	2
1.4. Política ambiental	2
1.5. Política de calidad	2
CAPITULO II: MARCO DE REFERENCIA	3
2.1. Justificación	3
2.2. Objetivos	4
2.2.1. Objetivo general	4
2.2.2. Objetivos específicos	4
CAPITULO III: MARCO TEORICO	5
3.1. El trigo	5
3.1.1. Clasificación del trigo	5
3.2 Trigo durum	6
3.2.1. Características generales	6
3.3. Sémola de trigo durum	7
3.4. Gluten	8
3.5. El almidón	9
3.5.1. Propiedades de hidratación del almidón	9
3.6. Industria de las pastas	9
3.6.1. Clasificación de la pasta	10
3.7. Elaboración de la pasta	10
3.7.1. Amasado	10
3.7.2. Extrusión	11
3.7.3. Secado	11
3.7.4. Producto terminado	11
3.8. Los insertos.	11

3.9. Cocción	12
3.10. Calidad de la pasta	12
CAPITULO IV: DESCRIPCION Y PROCEDIMIENTO DE ACTIVIDADES	13
4.1. Pruebas de cocción de diferentes formatos de spaghetti	13
4.1.1. Metodología	14
4.1.1.1. Puntos a considerar para pruebas de cocción	14
4.2. Determinación de las dimensiones del spaghetti	16
4.2.1. Metodología	16
4.2.1.1. Materiales y equipos	16
4.2.1.2. Procedimiento	17
4.3. Determinación de humedades por norma	18
4.3.1. Metodología	18
4.3.1.1. Materiales y equipos	18
4.3.1.2. Procedimiento	18
4.3.1.3. Fórmula para el porcentaje de humedad	19
4.4. Determinación del porcentaje de almidón	20
4.4.1. Metodología	20
4.4.1.1. Materiales y equipos	20
4.4.1.2. Procedimiento	20
4.5. Realización de una lista de especificaciones de cada inserto	22
5. resultados	23
6. conclusiones	26
7. recomendaciones	27
8 competencias desarrolladas y/o aplicadas	27
9 referencias bibliográficas	28

INDICE DE TABLAS

Tabla 1. Clasificación del trigo en México con base a la función del gluten	5
Tabla 2. Comparación de la composición química de los trigos	7
Tabla 3. Límites permisibles de la sémola de trigo durum de acuerdo al Codex	
estándar	8
Tabla 4. Técnica para la elaboración de pruebas de cocción	15
Tabla 5. Técnica para la determinación de humedades	19
Tabla 6. Datos obtenidos del spaghetti menú solution	23
Tabla 7. Datos obtenidos del spaghetti Member Mark	23
Tabla 8. Datos obtenidos del spaghetti menú solution	24
INDICE DE ANEXOS	
ANEXO A	
 Ficha técnica de la sémola de trigo durum Diagrama de proceso de la elaboración del spaghetti Requerimientos de calidad del proceso productivo 	30 31 32
ANEXO B	
 Tabla de la determinación de humedades Tabla de determinación del porcentaje de almidón del spaghetti menú solutions. 	34 35
Tabla de determinación del porcentaje de almidón del spaghetti member Mark	36
 Tabla de determinación del porcentaje de almidón del spaghetti italpasta. Dimensiones del spaghetti menú solution 	38
 Dimensiones del spaghetti member Mark Dimensiones del spaghetti italpasta 	39 40
ANEXO C	
 Lista de insertos de la línea A y B Lista de insertos de la línea C y D 	42 43

CAPITULO I

GENERALIDADES DE LA EMPRESA

1.1. ANTECEDENTES HISTÓRICOS DE LA EMPRESA


El grupo industrial "la italiana S.A de C.V." inicia en México en una pequeña fábrica de pastas fundada en la ciudad de puebla en el año de 1920, por una familia de inmigrantes italianos. Desde su fundación ha logrado ofrecer en sus productos los secretos de la tradición italiana para la elaboración de pastas.

Pensando siempre en satisfacer las necesidades y gusto de sus consumidores, Utiliza tecnología de punta en los procesos industriales y esto da como resultado, la preferencia de la marca a nivel nacional o internacional.

Gracias al éxito de "LA ITALIANA", FABRICA DE PASTAS" se logra la fundación de otras compañías que actualmente forman parte del grupo: MOLINO HARINERO SAN BLAS, GALLETAS GISA, ITALGRANI Y TRANSPORTES ALIANO.

Actualmente cuenta con una gran capacidad productiva, instalada en extensas superficies de terreno en los estados de puebla y Guanajuato.

El grupo industrial "LA ITALIANA" distribuye sus productos a lo largo y ancho del país exportando también a mercados internacionales; generando más de 2,000 empleos permanentes.

1.2. MISIÓN

Elaborar productos de excelente calidad, manteniendo la tradición, prestigio e innovación en nuestros productos y procesos.

1.3. VISIÓN

Transmitir la pasión con la que hacemos nuestros productos a todos nuestros consumidores para que puedan disfrutar de deliciosos platillos, mediante nuestra presencia en un mercado globalizado y la preferencia de los mismos hacia nuestra marca, cuidando siempre la excelencia en el trato hacia el cliente, nuestros empleados y proveedores.

1.4. POLITICA AMBIENTAL

El grupo industrial "LA ITALIANA" está comprometida en satisfacer las necesidades de los clientes, proveedores y consumidores de una manera segura al prevenir la contaminación del medio ambiente local y global, mediante los siguientes lineamientos:

- Cumplir la legislación ambiental mexicana, así como otras disposiciones aplicables.
- ➤ Usar en forma responsable los recursos naturales (agua, combustibles, energías eléctricas y materiales).
- Eliminar gradualmente los residuos y disponer de una, forma ambientalmente segura para los que se generen.
- Incrementar progresivamente el reciclaje de los residuos que se generen.

1.5. POLITICA DE CALIDAD

La empresa está comprometida en elaborar productos que cumplan con los estándares de calidad e higiene tanto nacionales como internacionales altamente competitivos y seguro para el consumidor. La empresa está comprometida con el consumidor dándole productos seguros, nutritivos e higiénicos.

También se compromete a observar siempre la misma calidad y brindar el mejor servicio.

CAPITULO II

MARCO DE REFERENCIAS

2.1. JUSTIFICACIÓN

Actualmente la demanda en la empresa la italiana esta en constante crecimiento por ello la empresa de este sector se enfrenta a una gran competencia por esta razón necesita estar continuamente innovando, generando productos de alta calidad para poder competir en mercados locales e internacionales.

Con la necesidad de incrementar la producción de manera eficiente de los productos con una buena calidad. Teniendo inconvenientes en el empaquetamiento de los nutrientes afectando la calidad y producción de las pastas. Surge la necesidad de realizar este proyecto con la finalidad de verificar el buen funcionamiento de los insertos dentro de la línea de producción del spaghetti logrando contribuir a la mejora de la calidad de producción y productos terminados, aplicando los estándares de calidad. Reduciendo costos y tiempos de producción.

2.2. OBJETIVOS

2.2.1. OBJETIVO GENERAL

✓ Determinar y evaluar el porcentaje de almidón de pastas largas para verificar el desgaste de los insertos en la línea de producción del spaghetti.

2.2.2. OBJETIVOS ESPECIFICOS

- ✓ Realizar pruebas de cocción de diferentes formatos del spaghetti
- ✓ Determinar el porcentaje de almidón
- ✓ Determinar humedades de cada formato del spaghetti por norma
- ✓ Verificar el buen funcionamiento de los insertos de acuerdo a las pruebas de cocción y dimensiones de la pasta cumpliendo correctamente con los estándares de calidad.
- ✓ Realizar una lista de especificaciones de los insertos de cada línea.

2.3. PROBLEMA A RESOLVER

Actualmente el grupo industrial "La italiana S.A de C.V" no cuenta con personal que se dedique a tener un buen control sobre la vida útil de los insertos, ya que estos se desgastan y afectan el proceso de secado, la calidad e inocuidad del spaghetti, teniendo así humedades no permitidas lo cual conlleva al crecimiento de microorganismos, desnaturalizar los almidones y proteínas durante el proceso de secado, tener físicamente pastas con manchas blancas.

Todos estos factores afectan directamente a la empresa ya que es perdida de proceso, tiempo, dinero y productos en buena calidad.

Otro problema que se presenta, es que no cuenta con un control de los insertos de cada línea de producción en el área de moldes, algunos moldes no cuentan con sus apropiadas especificaciones, por lo que se realizara un listado con sus respectivas especificaciones.

CAPITULO III MARCO TEÓRICO

3.1. EL TRIGO

La cadena del trigo comienza con la producción agrícola del cereal, seguida por la producción de bienes intermedios y materias primas derivados del proceso de molturación de trigo (harina y subproductos). Los pasos fundamentales de la molienda son la trituración (fragmentación del grano), el tamizado (para separar las partículas según el tamaño) y la purificación (para separar las partículas provenientes del salvado o pericarpio). De esta manera, un proceso de trituración convierte el trigo en harina que se transforma a su vez en la materia prima para la elaboración de pastas alimenticias con base en la sémola en diferentes proporciones.

3.1.1. CLASIFICACIÓN DEL TRIGO

La clasificación de los trigos en México se comercializan se hace con base en la funcionalidad del gluten, como se indica en la tabla 1.

TABLA 1. Clasificación del trigo en México con base en la funcionalidad del gluten

GRUPO	DENOMINACIÓN	CARACTERISRICAS DEL GRLUTEN	
I	fuerte	Gluten fuerte y elástico, apto para la industria mecanizada de	
		panificación y mejorador de trigos suaves.	
II	medio fuerte	Gluten medio fuerte y elástico, apto para la industria	
		artesanal o semimecanizada de panificación, es mejorador	
		de trigos suaves.	
III	suave	Gluten débil o suave pero extensible apto para la industria	
		galletera y la elaboración de tortilla, buñuelos, etc.	
IV	tenaz	Gluten corto o poco extensible pero tenaz, apto para la	
		industria pastelera, galletera y la elaboración de donas.	
V	cristalino	Gluten corto y tenaz, apto para la industria de las pastas.	

Fuente: serna, 2005; ASERCA, 2007.

3.2. TRIGO DURUM

El trigo durum es la única materia prima permitida por la legislación en Italia ya que difiere en varios aspectos del trigo durum tales como la interacción proteína-almidón y el comportamiento al tamizado, entre otro, que desde el punto de vista de los parámetros químicos y sus características físicas y reológicas, son útiles para predecir el comportamiento de la materia prima durante el procesamiento.

Los trigos blandos producen harinas muy finas, compuestas de fragmentos irregulares, difíciles de tamizar, con menor adhesión entre almidón y proteínas y menor lesión de los granos de almidón.

El contenido de proteína y la calidad del gluten en el grano son las variables más importantes en la determinación de la calidad de la pasta en la cocción.

3.2.1. CARACTERISTICAS GENERALES

La mayoría de las variedades son de color ámbar y endospermo duro, es alargado y tienen forma de cuerno o gancho en uno de sus extremos; además carece de vellosidades como se observa en la figura 1. El grano se presenta un gluten que varía de medio fuerte a fuerte dependiendo del porcentaje de proteína como se muestra en la **tabla 1.** Tiene alta concentración de pigmentos amarillos (carotenoides) y baja concentración de lopoxidasa (enzima que destruye los pigmentos durante el procesamiento de semolina, disminuyendo así el color amarillo en el producto terminado (Dexter et al., 2010).

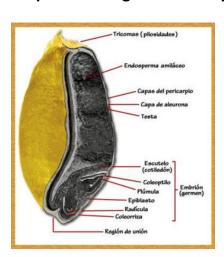


Figura 1. Cariópside de trigo cristalino y sus estructuras.

En la **tabla 2.** Se observa la composición química del trigo panadero (Trigo astivum) y del trigo cristalino (Trigo durum). Ambos presentan diferencias sobre todo en lo que respecta al contenido de proteína.

Los trigos cristalinos contienen mayores porcentajes de proteína que los comunes. Esto parece ser el resultado del ambiente en el cual han sido desarrollados; condiciones semiáridas, generalmente producen bajos rendimientos de cosecha (Pomeraz ,2007).

Tabla 2. Comparación de la composición química de los trigos.

COMPONENTE	TRIGOS PANADEROS	TRIGOS CRISTALINOS
PROTEÍNA	11.5% – 17.0 %	9.0% - 18%
FIBRA CRUDA	2.8% - 3.0%	2.4% – 3.1%
CENIZAS	1.8% - 2.0%	1.8% - 2.1%

FUENTE: Fabriani et Lintas, 1998; Williams et al., 2000; serna, 2001.

La principal diferencia entre estas variedades en lo que respecta a la elaboración de pastas alimenticias, es que las pastas hechas con trigos cristalinos tienen mayor estabilidad cuando son sometidas al proceso de cocción, no tienden a desintegrarse ni a convertirse en una masa cuando se conservan en el agua después del cocimiento. Además, poseen color amarillo, preferido por los consumidores (Salazar, 2008).

3.3. SEMOLA DE TRIGO DURUM

La sémola de trigo durum es un producto granular de color amarillo oscuro y estructura vítrea, proveniente de la molienda del endospermo del grano obteniendo una harina de granulo grueso libre de tegumentos y germen (Hoseney, 2009; granito et al., 2003; CANIMOLT, 2015).

Así mismo en el Codex alimentarius se establece que la sémola debe tener un contenido máximo de humedad de 14.5%, un mínimo de 10.5% de proteína y un límite máximo de cenizas del 1.3% (Codex Stan 178/1991, 1991).

En la **tabla 3.** Se muestra los límites permisibles de acuerdo al Codex Stan. En los casos en que figure más de un límite de factor y/o método de análisis se recomienda encarecidamente a los usuarios que especifique el límite y numero de análisis apropiados.

Tabla 3. Límites permisibles de la sémola del trigo durum.

Factor/Descripción	Limite	Método de análisis
CENIZA		HOAC 923.03 (Método del Tipo I)
sémola de trigo duro	Máx.: 1,3 % referido al producto seco	IZO 2171 (1980) - Cereales, legumbres y productos derivados - Determinación de la ceniza - Método B-550°C a peso constante
sémola integral de trigo duro	Máx.: 2,1 % referido al producto seco	
■ harina de trigo duro	Máx.: 1,75 % referido al producto seco	
PROTEÍNA (N 5,7)		ICC 105/1 - Método de determinación de la proteína bruta en cereales y productos a base de cereales para alimentos de consumo humano y
sémola de trigo duro	Mín.: 10,5 % referido al producto seco	para piensos, utilizando catalizador de selenio/cobre (Método del Tipo I)
sémola integral de trigo duro	Mín.: 11,5 % referido al producto seco	- 6 - IZO 1871:1975
■ harina de trigo duro	Mín.: 11,0 % referido al producto seco	
SUSTANCIAS NUTRITIVAS vitaminas minerales aminoácidos	De conformidad con la legislación del país en que se vende el producto	No se ha definido ningún método
TAMAÑO DE LA PARTÍCULA		No se ha definido ningún método
■ sémola de trigo duro	Máx.: El 79 % deberá pasar a través de gasa de seda de 315 micras o de un tamiz textil sintético	
■ harina de trigo duro	Mín.: El 80 % deberá pasar a través de gasa de seda de 315 micras o de un tamiz textil sintético	

Las características físico-químicas, higiénico-sanitarias y organolépticas de la sémola del trigo durum se observa en el **anexo 1**.

3.4. GLUTEN

El gluten de trigo está presente en estructuras en forma de cuña que se encuentran entre los gránulos de almidón. Es el material vítreo cuando está seco, pero la adición de una cantidad moderada de agua permite que se produzca cambios en su naturaleza física y química. El gluten se transforma en un material gomoso y elástico que adquiere la capacidad de formar cadenas y láminas mediante el establecimiento de puentes intermoleculares. Estas propiedades son fundamentales para su papel como matriz continua que atrapa y encapsula al almidón en la pasta y mantiene la forma del producto durante su elaboración y cocción.

3.5. ALMIDÓN

Los gránulos del almidón son relativamente densos e insolubles, y no se hidratan bien en agua fría. Estos se clasifican según su tamaño: en grandes de 20 hasta 100 µm y pequeños de hasta 1 µm (Callejo, 2012; Hoseney, 2009. El almidón posee una estructura particular que otorga las propiedades específicas de solubilidad, viscosidad, gelificación o adhesión según las condiciones de hidratación y temperatura de los alimentos (Matissek et al., 1998).

3.5.1. PROPIEDADES DE HIDRATACIÓN DEL ALMIDÓN

El agua es muy importante en la fabricación de pastas alimenticias ya que el almidón integro absorbe menos de la mitad de su peso, si el almidón se ha dañado absorberá el doble de su peso en agua. La absorción de agua también cambia con cambios de temperatura. A mayor temperatura del agua es absorbida más. Se deduce que el amasado con agua fría se debe aumentar para quedarse con la misma consistencia de masa. Los gránulos de almidón son insolubles en agua fría, pero se hinchan cuando se calientan en medios acuosos. Inicialmente el hinchamiento es reversible y las propiedades ópticas del gránulo no se pierden; sin embargo, cuando se alcanza una cierta temperatura, el hinchamiento llega a ser irreversible y la estructura del granulo se altera significativamente. Este proceso es conocido como gelatinización.

3.6. INDUSTRIA DE LAS PASTA

Según el código alimentario (Reglamentación técnico sanitaria para la elaboración, circulación y comercio de pastas alimenticias) se designaran con el nombre de pastas alimenticias los productos obtenidos por desecación de una masa no fermentada elaborada con sémolas o harinas procedentes de trigo duro, trigo semiduro o trigo blando o sus mezclas con agua potable. La pasta es un alimento nutritivo que contiene carbohidratos complejos y es baja en grasa. Es un alimento de bajo costo, fácil de preparar, versátil que puede ser consumido por todos los sectores de la población (Kruger, et al 2006).

3.6.1. CLASIFICACION DE LAS PASTAS

La pasta puede clasificarse, de acuerdo al contenido de humedad final en el producto, en pasta fresca (humedad final $(H_f) \ge 24\%$), pasta estabilizada (24% < $(H_f) \ge 20\%$) y pasta seca $H_f \ge 12.5\%$. sin embargo, aunque es uno de los más comunes no es el único criterio de clasificación.

En general, pueden clasificarse en los siguientes tipos:

- Pastas alimenticias simples o pastas alimenticias: están elaboradas con sémola de trigo duro (triticum durum), semiduro, blando o sus mezclas. Las elaboradas excesivamente con sémola de trigo duro se clasifican como de calidad superior.
- Pastas alimenticias compuestas: so aquellas en cuya elaboración incorporan alguna de las siguientes sustancias como gluten hortalizas y verduras.

3.7. ELABORACIÓN DE LA PASTA

3.7.1. AMASADO

La función de las amasadoras es hacer que todos los granos de sémola sean embebidos del agua suficiente para hidratarse, para poder formar una masa que sea moldeable en un formato de pastas. El trabajo de los tornillos junto a la contra presión de molde y al vacío hace que la masa de una amalgama y se vuelva una pasta compacta, por lo tanto, el agua misma es definitivamente distribuida de forma homogénea por toda la masa; con el amasado se puede influir sobre la calidad del producto, su textura y color.

También puede influir en parte sobre el secado. Durante la preparación de la masa se adiciona agua en una proporción entre 18% y 25% de las materias primas secas, para obtener una masa fresca que contiene una humedad promedio entre 30% y 32%.

3.7.2. EXTRUSIÓN

En el momento de pasar a extrusión el contenido de humedad de la masa debe estar alrededor de 28%.La mezcla se somete a una presión continua de hasta 150 atm (por lo general, 80-120 atm) a lo largo del tornillo sinfín, procurando que no se alcance la temperatura de 50°C.estos factores serian negativos para el gluten en sí y además tendrían efectos negativos sobre el almidón.

3.7.3. SECADO.

El propósito del secado es producir una pasta fuerte y estable. La humedad es removida de la superficie de la pasta por una corriente de aire caliente, creando un gradiente de humedad dentro de la pasta (Sissons, 2004). Las grietas o líneas de fractura que se desarrollan con un secado inadecuado pueden causar el quiebre del producto seco durante el empaque y el almacenamiento. Debido a esto, la pasta puede desintegrarse y deteriorarse su apariencia durante la cocción, y ser rechazada por el consumidor. El calor del secado ayuda a crear una red permanente de proteína alrededor de los gránulos de almidón, favoreciendo la resistencia y la integridad de la pasta.

3.7.4. PRODUCTO TERMINADO

El producto tiene que pasar del 30% de humedad al 12.5% con una baja actividad de agua para garantizar una larga vida útil (Sissons, 2004), y el procedimiento de secado también depende del tipo de pastas.

3.8 INSERTOS

Los formatos de pasta se moldean por extrusión o lamiado, esto quiere decir, que reproducen la figura de la pasta deseada, la masa pasa una boquilla de descarga de un molde. Un inserto mal realizado, dañado, gastado o hinchado puede hacer notar puntos blancos, estrías, etc. Los insertos tienen un desgaste natural que varía de formato a formato y en funciones de varios factores adicionales. El desgaste provoca un aumento del diámetro o grosos del formato, lo cual afecta: La receta de secado, el llenado del paquete Y los minutos de cocción

3.9. COCCIÓN

La cocción de la pasta consiste en una proporción determinada de agua hirviendo durante un tiempo óptimo de cocción.

El tiempo óptimo de cocción se define como el mínimo en minutos cuando no es posible observar un núcleo línea blanca en el centro del espagueti después de comprimirlo entre dos placas de vidrio (NTC 5080, ICONTEC, 2002). La penetración de agua durante la cocción del spaghetti es principalmente una función de la proteína contenida. La gelatinización del almidón toma lugar en dirección hacia adentro y ocurre a una rápida velocidad a concentraciones bajas de proteína. Se ha reportado que el almidón cambia durante la cocción de la pasta variando desde una gelatinización-hidratación en la capa superficial hasta una fundición sin estructura cristalina en el centro inducida por el calor. Se especula que tanto el estado del almidón como la estructura superficial, contribuyen al desarrollo de la textura elástica y pegajosidad de la pasta.

3.10. CALIDAD DE LAS PASTAS

Los criterios de calidad de la pasta seca establecen la ausencia de grietas y de manchas, y la presencia de una superficie lisa y una coloración amarilla, y los de pasta cocida se centran en la coloración, firmeza y ausencia de pegajosidad. La calidad en la cocción es un aspecto de interés en la elaboración de pasta. Se puede evaluar mediante su comportamiento reológico, la firmeza después de la cocción y las condiciones de superficie de la pasta cocinada.

Una pasta cocida se caracteriza por mantener una buena textura, ser resistente a la desintegración de la superficie y a la pegajosidad, y conservar una estructura firme o una consistencia al dente. Algunas propiedades físicas que pueden revelar la calidad de la pasta son la compresibilidad, elasticidad, la absorción de agua, el grado de hinchazón, la pérdida de sólidos en el agua de cocción y la cantidad de proteínas de la sémola y sus características intrínsecas.

CAPITULO IV

DESCRIPCION Y PROCEDIMIENTO DE ACTIVIDADES

Durante el periodo de prácticas se evaluaron tres de formatos de spaghetti que cuenta el grupo industrial la italiana (italpasta, menú solution y members Mark), todas elaboradas con trigo durum bajo diferentes condiciones de extrusión y ciclos de secado similares.

A continuación dentro de este apartado, se darán a conocer con mayor detalle las actividades que se realizaron de forma cronológica, los instrumentos que lograron que este informe técnico se llevara a cabo y la metodología de cada una de ellas, dentro del área de laboratorio de calidad.

4.1. PRUEBAS DE COCCION DE DIFERENTES FORMATOS DE SPAGHETTI.

El objetivo de este es verificar el cumplimiento del tiempo de cocción "al dente" de la pasta, establecido en la especificación técnica del producto terminado. Así como la calidad del producto en el cocimiento del spaghetti.

La evaluación de la pasta efectuada se realiza con un análisis sensorial masticando la pasta cocida puede ser un poco subjetiva, por lo cual se debe integrar siempre con algunas otras determinaciones de carácter puramente analítico para tener un amplio conocimiento para su juicio final. Otras determinaciones, algunas de tipo químico, otras de tipo reológico con oportunos instrumentos, son por lo tanto oportunas para integrar la simple degustación. Por lo tanto se procura acercarse lo más posible a la cocción normal de casa, por lo tanto, las pruebas deben ser tratadas de forma analítica para que los resultados sean siempre comparables.

Durante las pruebas de cocción debemos tener muy presentes dos factores importantes para una buena realización, los cuales son:

- La manera con la cual se hierve el agua
- Los minutos exactos de cocción.

4.1.1. METODOLÓGIA

4.1.1.1. PUNTOS A CONSIDERAR PARA PRUEBAS DE COCCIÓN

- 1. No considerar las muestras de pasta de inicio y fin del proceso, ya que tienen mayores cantidades de humedades y poder determinar correctamente el tiempo exacto de cocción por lo que se recomienda agarrar muestra en la línea de empaque del spaghetti.
- **2.** El tiempo de cocción "al dente" puede variar de acuerdo a la composición de sus ingredientes de cada formato.

4.1.1.2. MATERIALES

- 1. Recipiente con coladera capacidad de 2 litros de acero inoxidable.
- 2. Plato extendido para depositar el spaghetti cocido.
- 3. Tenedor para spaghetti. Y estufa de gas.
- 4. Dos acrílicos con dimensiones aproximadamente de 10x5 cm con espesor de 5 mm.
- 5. Balanza con precisión de 1 kg.
- 6. Cronometro.

4.1.1.3. PROCEDIMIENTO

Este procedimiento se realizara una vez al día en la que haya producción de spaghetti, de igual manera se realizara la misma metodología para todos los formatos: italpasta, menú solutions, members Mark.

A continuación en la tabla 4. Se presenta una guía técnica para la elaboración de las pruebas de cocción del spaghetti.

TABLA 4. Técnica para la elaboración de pruebas de cocción.

No.	OPERACIÓN A REALIZAR	MEDIOS PREVENTIVOS	
1	Pesar 100 gr de pasta del formato que se esté produciendo en la línea del spaghetti.	N/A	
2	Medir con una probeta de plástico de 1000 ml de agua.	N/A	
3	Colocar una olla de acero inoxidable sobre la estufa	N/A	
4	Calentar en la estufa a fuego alto el agua hasta que llegue al punto de ebullición.	N/A	
5	Incorporar los 100 gramos de pasta cuando el agua alcance su punto de ebullición.	Considerar que esta no debe hervir demasiado tiempo sin que la prueba empiece ya que se evapora el agua.	To the last of the
6	Mover ocasionalmente 2 o 3 veces la pasta mientras dure la prueba de cocción, esto evitara que el spaghetti se pegue.	N/A	N/A
7	Bajar la intensidad de la llama cuando el agua empieza a hervir nuevamente.	Revisar la especificación del spaghetti (10 - 12 min), verificar el tiempo de cocción 2 minutos antes.	N/A
8	Tomar una muestra de la pasta cocina y verificar si está en las condiciones óptimas para tener una pasta "al dente"	Tomar una pieza del spaghetti cocida, colocarla en medio de dos acrílicos y hacer presión con estos. Observar la línea que se forma, la cual debe ser menor ni mayor al ancho de 1 mm aprox.	N/A
9	Teniendo la cocción optima, retirar la pasta del agua y colocarlos en un recipiente.	N/A	
10	Determinan pruebas físicas (pegajosidad, Nervo y soltura). El agua de cocción restante guardar en un matraz volumétrico de 1000 ml.	No desechar el agua de cocción, esta será utilizada para realizar pruebas de almidón	

Ya realizadas las pruebas de cocción y teniendo los datos reales del tiempo de cocción de cada formato de spaghetti se realiza una revisión sensorial de las pasta "al dente". Entre ellos está la pegajosidad el aglomerado en el plato y la consistencia.

4.2. DETERMINACIÓN DE LAS DIMENSIONES DEL SPGHAETTI

El objetivo de esta actividad es determinar y verificar el cumplimiento a la especificación del producto terminado del spaghetti con respecto a las dimensiones tales como calibre (grosor) y largo (longitud).

Es de vital importancia la determinación de las dimensiones de la pasta seca porque son factores esenciales para la verificación del buen funcionamiento de los insertos dentro del área de prensado en la línea de producción, el buen empacamiento y firmeza durante las pruebas de cocción; también es muy importante contar con un buena pasta o un buen empaquetamiento del almidón por medio de los insertos, esto generara que desnaturalicemos las proteínas en la cocción y por consecuencia tener mayor cantidad de almidón.

Teniendo en cuenta las dimensiones, si se presentan datos no acorde a las normatividades de calidad dentro de la italiana, se procede a modificar la posición del molde, o bien, inserto o verificar si no está desgastado.

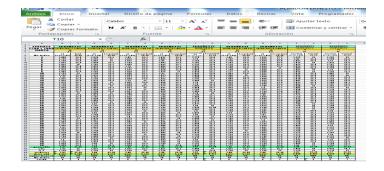
4.2.1. METODOLÓGIA

4.2.1.1. MATERIALES Y EQUIPOS

- 5. Micrómetro de exteriores digital, 0 1", con convertidor a mm (equipo con display digital).
- 6. Flexómetro.
- 7. equipo de cómputo con paquetería office.
- Procesador de datos y claves conectores de acuerdo a los micrómetros para el registro de datos a través de la paquetería de Excel.

4.2.1.2. PROCEDIMIENTO

1. Tomar 20 piezas para muestras de dimensiones del mismo paquete de spaghetti que se utilizó para las pruebas de cocción. Las pruebas se harán de acuerdo a los programas de producción y del cambio de formato.


2. Realizar las dimensiones de las 20 piezas por medio del micrómetro de exterior para determinar el calibre y con ayuda del flexometro medir el largo del spaghetti. Analizar los datos que se obtuvieron bajo especificaciones de calidad. Para el calibre las especificaciones es el rango de 1.75 mm a 1.85 mm y para el largo entre 25 cm a 26 cm.

3. Pasar los resultados a Excel que corre con las funciones de promedio desviación estándar, mínimos, máximos, moda y confirmar que el promedio de todos los datos estén dentro de la especificación. Si salieran fuera de especificación reportar o ir a modificar el molde para ajustar las dimensiones o en casos extremos hacer paro de línea y cambiar insertos.

4.3. DETERMINACIÓN DE HUMEDADES POR NORMA

El objetivo de esta actividad es determinar el porcentaje de humedades en productos derivados del trigo (pasta de sémola de trigo) en este caso del spaghetti De acuerdo a la norma oficial mexicana NOM – 247 –SSA1 – 2008, productos y servicios, cereales, harinas de cereales, semolinas. Alimentos a base de: cereales, semillas comestibles, de harinas, sémolas o semolinas o sus mezclas. Productos de panificación. Disposiciones sanitarias y nutrimentales. Métodos de prueba aplicables.

Estas determinaciones son muy importantes para el departamento de calidad y procesos; por lo que deben tener un control de las humedades de cada línea óptima para cada formato de pasta. En el caso de las pastas largas de la línea B (spaghetti) tienen un estándar de calidad para las humedades establecidas con un rango de 11.5% a 12.5%. Si llega a salir del rango es muy crítico para los supervisores de calidad y producción, tomando una acción de modificar las temperaturas dando la humedad correcta. Las humedades del spaghetti también forman parte importante para la determinación del porcentaje de almidón; teniendo así una mala prueba de cocción y mucho desprendimiento de almidón dentro del agua de cocción desnaturalizando las proteínas.

4.3.1. METODLÓGIA

4.3.1.1. MATERIALES Y EQUIPOS

- **5.** Espátula
- **6.** Pinzas de acero inoxidable para charolas
- Charolas de aluminio duro con tapa deslizante y hermética con un diámetro de 55 mm x 15 mm de altura.
- **8.** Desecador hermético con agente desecante apropiado, tales como sílica gel.
- **9.** Horno para humedades.

4.3.1.2. PROCEDIMIENTO

En la tabla 5. Se muestra el procedimiento para la determinación de humedades mediante norma.

TABLA 5. Procedimiento determinación de humedad.

No.	OPERACIÓN A REALIZAR	MEDIOS PREVENTIVOS	
1	Calentar el horno de secado a 130± 2, antes de introducir las muestras a este.	Si no ha llegado a la temperatura óptima pueden variar el peso de las charolas.	
2	Colocar las charolas sin la muestra dentro del horno de secado, dejar durante 30 min.	Tener cuidado con la temperatura del horno de secado.	
3	Sacar las charolas y colocarlos al desecador con silica durante 30 min para enfriarlas.	Las charolas no deben tener contacto con alguna superficie viva, esto puede alterar el peso constante de estas.	
4	Calibrar correctamente la balanza analítica	La mala calibración puede mostrar datos erróneos.	
5	Pesar dentro de la charola 2.0000 gr ± 0.0004 gr de muestra con ayuda de la pasta.	No rebasar los estándares de calidad permitidos de pesado.	
6	Colocar las charolas con la muestra dentro de la estufa y secar durante una hora	El tiempo debe empezar a contar cuando la estufa llegue a la temperatura indicada.	N/A
7	Abrir el horno, tapar las charolas y con ayuda de las pinzas colocar las charolas dentro del desecador durante 1 hora aprox.	N/A	N/A
8	Pesar las charolas frías nuevamente en la balanza analítica y anotar en una bitácora de anotaciones.	N/A	N/A

4.3.1.3. FORMULA PARA EL PORCENTAJE DE HUMEDAD.

Para determinar el contenido de humedad a partir de la pérdida de peso de la muestra de spaghetti se muestra la siguiente formula:

% humedad =
$$\frac{(P_i ch + Pm - P_{ch}m)x \ 100}{Pm}$$

Dónde: P_i ch: peso inicial de la charola a peso constante, Pm: peso de la muestra, $P_{ch}m$: meso de la charola con la muestra.

4.4. DETERMINACIÓN DEL PORCENTAJE DE ALMIDÓN

La determinación del porcentaje de almidón es un factor muy importante para verificar el funcionamiento de los insertos, teniendo como factor el empacado de dicho polisacárido dentro de la línea de prensa. También se relaciona con el tiempo de cocción, si sobrepasa el tiempo de cocción establecida por dichos estándares desnaturalizamos al almidón, formando una pasta gelatinizada, teniendo una pasta sin nutrientes para el consumidor., por lo tanto, cuando tenemos pastas en ese estado se realiza una trazabilidad del producto, lo que nos permite averiguar cuáles son los factores que afectan en la producción del spaghetti. Analizando con mayor amplitud las cusas y no cometer errores en el momento de realizar una acción que le cueste a la empresa.

4.4.1. METODOLÓGIA

4.4.1.1. MATERIALES Y EQUIPOS

- Probeta de 100 ml
- Matraz volumétrico de 1000 ml
- > Crisoles con capacidad de 50 ml
- Pipeta volumétrica de 50 ml
- Estufa para almidón.
- Pizeta

4.4.1.2. PROCEDIMIENTO

5. Se realiza pruebas de cocción de todos los formatos de spaghetti. Véase el procedimiento de prueba de cocción en el punto 4.1.1.3. y aforar el matraz volumétrico con agua destilada.

- 6. Realizar las dimensiones de cada formato de spaghetti. Véase en el punto 4.2.1.2 el método de determinación de las dimensiones del spaghetti.
- 7. Determinar las humedades por cada formato en la que se determine el porcentaje de almidón. Véase en el punto 4.3.1.3. Anteriormente mencionada.
- 8. Dependiendo las muestras del día de los formatos fabricados. Poner crisoles por duplicado por cada formato que se determinara su porcentaje de almidón. Y colocarlos en una mufla a una temperatura de 600 °C a peso constante durante 3 horas.

9. Después de dejar enfriar el agua de cocción; y que haya transcurrido las 3 horas de la mufla, se pesan los crisoles en la balanza analítica.

10. Con ayuda de una pipeta de 50 ml se coloca el agua de cocción dentro de los crisoles fríos.

11. Marcar con un símbolo cada crisol y posteriormente se coloca en la estufa para almidón a una temperatura de 180 °C por 24 horas.

12. Después de transcurrir las 24 horas se colocan los crisoles con almidón en el desecador aproximadamente 30 min, posteriormente se pesan.

13. Determinar el porcentaje de almidón con un estándar de calidad que no sobrepase el 10% de concentración de almidón aceptada dentro de la empresa.

4.5. REALIZACIÓN DE UNA LISTA DE ESPECIFICACIONES DE LOS INSERTOS DE CADA LINEA.

Se realizara una lista en Excel sobre las especificaciones de cada inserto que se encuentra en el área de moldes, teniendo así, una buena organización de los insertos que tienen dentro de la empresa, facilitando la rápida búsqueda de cada inserto cada vez que se solicite.

En el apartado del anexo 2 se observa la tabla elaborada en Excel de las especificaciones de los insertos.

5. RESULTADOS.

En las siguientes tablas se presentan los resultados experimentales obtenidos de los formatos de spaghetti que produce "LA italiana", menú solution, member Mark e italpasta.

Tabla 6. Datos obtenidos de spaghetti menú solution.

		TIEMPO DE	511112113131123		PORCENTAJE	PORCENTAJE DE	
No. DE MUESTRA	NOMBRE DE LA MUESTRA	COCCIOÓN (10- 12 min.)	Calibre(mm) (1.75-1.85)	, , ,		ALMIDÓN <10%	
1	SPAGHETTI MS	12:40	1.81	25.56	12.58	12.289	
2	SPAGHETTI MS	10:34	1.82	25.29	10.67	9.846	
3	SPAGHETTI MS	10:45	1.78	25.36	10.91	9.0505	
4	SPAGHETTI MS	11:12	1.81	25.48	11.4	6.704	
5	SPAGHETTI MS	11:53	1.79	24.48	11.28	9.4778	
6	SPAGHETTI MS	12:15	1.78	25.58	12.04	10.0434	
7	SPAGHETTI MS	10:25	1.79	25.50	11.41	8.85	

Tabla 7. Datos obtenidos del spaghetti Member Mark.

			TIEMPO DE DIMENSIONES		PORCENTAJE DE	PORCENTAJE		
ı	No. DE MUESTRA	MUESTRA	COCCIOÓN (10 - 12 min)	Calibre(mm) (1.75-1.85)	Largo (cm) (25-26)	HUMEDAD (10.5 – 12.5%)	DE ALMIDÓN <10%	
	1	SPAGHETTI MM	10:53	1.77	25.30	11.64	9.676	
	2	SPAGHETTI MM	11:14	1.78	25.48	12.07	9.7822	
	3	SPAGHETTI MM	10:46	1.82	25.51	10.85	8.6375	
	4	SPAGHETTI MM	10:35	1.78	25.30	11.21	8.47	
	5	SPAGHETTI MM	10:38	1.77	25.30	11.45	8.9074	
	6	SPAGHETTI MM	11:25	1.77	25.48	10.56	9.895	
	7	SPAGHETTI MM	11:42	1.81	25.30	11.48	8.4136	

Tabla 8. Datos obtenidos del spaghetti italpasta.

	TIEMPO DE	DIMENSIO	DIMENSIONES		PORCENTAJE
MUESTRA	COCCIOÓN (10 – 12 min).	Calibre(mm) (1.75-1.85)	Largo (cm) (25-26)	PORCENTAJE DE HUMEDAD (10.5 – 12.5%)	DE ALMIDÓN <10%
SPAGHETTI IP	12:25	1.81	25.33	12.35	10.8641
SPAGHETTI IP	11:40	1.81	25.36	11.52	6.2506
SPAGHETTI IP	11:30	1.82	25.49	11.53	8.87
SPAGHETTI IP	11:55	1.82	25.41	11.74	6.534
SPAGHETTI IP	10:19	1.81	25.46	11.08	5.5099
SPAGHETTI IP	10:24	1.81	25.43	11.43	7.3122
SPAGHETTI IP	10:14	1.83	25.49	10.89	7.292
SPAGHETTI IP	10:41	1.82	25.51	11.27	7.278
SPAGHETTI IP	10:58	1.77	25.48	12.5	9.395
SPAGHETTI IP	13:10	1.79	25.43	12.98	12.318
SPAGHETTI IP	11:25	1.77	25.48	11.28	5.9504
SPAGHETTI IP	10:35	1.79	25.42	10.66	6.978
SPAGHETTI IP	11:07	1.78	25.14	10.87	8.0175
SPAGHETTI IP	10:14	1.79	25.58	11.04	8.168
SPAGHETTI IP	11:15	1.78	25.48	10.91	8.084
SPAGHETTI IP	12:00	1.79	25.30	11.19	8.3962
SPAGHETTI IP	11:45	1.78	25.30	11.12	8.204
SPAGHETTI IP	11:12	1.78	25.48	11.39	9.178
SPAGHETTI IP	10:39	1.77	25.48	11.45	9.025
SPAGHETTI IP	10:20	1.79	25.37	12.01	8.952
SPAGHETTI IP	11:55	1.82	25.44	11.5	9.898
SPAGHETTI IP	10:16	1.82	25.37	11.78	7.876
SPAGHETTI IP	10:23	1.81	25.53	11.49	7.74

Para el caso de los formatos menú solution y member Mark, se realizaron 7 muestras en diferentes tiempos de producción debida que no es uno de los formatos de spaghetti mayormente producido dentro del grupo industrial la italiana. Para el caso del spaghetti de italpasta se realizaron 21 muestras ya que es la marca que ellos tienen prioridad.

En las tablas 5,6 y 7 se proporciona el tiempo que llevo la cocción de la pasta, las dimensiones de la pasta seca antes de la cocción el porcentaje de humedad y de almidón.

Para que sepamos que el inserto está en buenas condiciones debemos verificar estos factores que estén dentro de especificaciones requeridas mostrados en las tablas anteriores.

Observamos que en la muestra 1 y 5 del spaghetti menú solution y la muestra 1 del spaghetti italpasta que se encuentran de color amarillo indica que la pasta elaborada no está dentro de las condiciones; para el primer caso, se obtuvo una humedad elevada fuera de especificación de 12.58% y un tiempo de cocción de 12:40 min, por lo tanto, en el momento de la cocción desprendió mayor cantidad de almidón, esto conlleva, a tener un porcentaje de almidón de 12.289%; de acuerdo a estos datos se procede a verificar y si es posible remover el inserto o se realiza una trazabilidad del producto para verificar cual es el factor que está afectando.

Para el segundo y tercer caso, se obtuvieron aumentos considerables del tiempos de cocciones y un leve porcentaje de almidón, por otra parte, las dimensiones y las humedades se encuentran dentro de especificaciones, lo cual se procede a revisar al analista, que este realizando correctamente las pruebas de cocción ya que eso es uno de los factores que afecta en las pruebas de cocción.

En el apartado de anexos se presentan las dimensiones de cada formato de spaghetti, así también como la tabla de determinación de humedades y de almidón.

6. CONCLUSIONES

De acuerdo a los objetivos propuestos para este proyecto se logró recabar la información necesaria para lograr verificar el buen funcionamiento de los insertos de la línea de producción del spaghetti. Dándole la debida importancia en la elaboración de las pastas alimenticias ya que estos proporcionan la forma y la estabilidad de las pastas durante el resto del proceso, reduciendo los riesgos del mal empaquetamiento de las proteínas y no tener pastas deformes, con puntos blancos y posteriormente sin ningún nutriente para el consumidor, teniendo una mala calidad del producto terminado.

También, debo mencionar que las normas de especificaciones de calidad son de vital importancia ya que se aseguran de la inocuidad y calidad del producto, en este caso de las pastas alimenticias. Dando así un mayor valor de seguridad en cada uno de los productos que se generan.

Gracias a la realización de este proyecto, me permitió desarrollar nuevas habilidades, nuevos conocimientos y nuevas técnicas en el área de calidad. Teniendo un amplio conocimiento de cómo se labora y la responsabilidad que conlleva estar en una industria, procurando la inocuidad, el cuidado y la buena calidad de los productos.

7. RECOMENDACIONES

- Se recomienda a la empresa capacitar al personal asignada en la vida útil de los insertos, ya que no cuenta con personal preparado, ni el control de estos.
- ➤ En la realización de las pruebas de cocción, se recomienda asignar a una sola persona, ya que tendrá el mismo margen de error en cuestión de los tiempos de cocción.
- En el área de moldes, se recomienda continuar con la actualización de la lista de los insertos de cada línea de producción para no tener complicaciones.
- Para la determinación de las dimensiones, se recomienda calibrar cada 6 meses un micrómetro de exteriores y el otro dejarlo en funcionamiento ya que a mediados de diciembre y en el mes enero no se contaba con esos equipos.

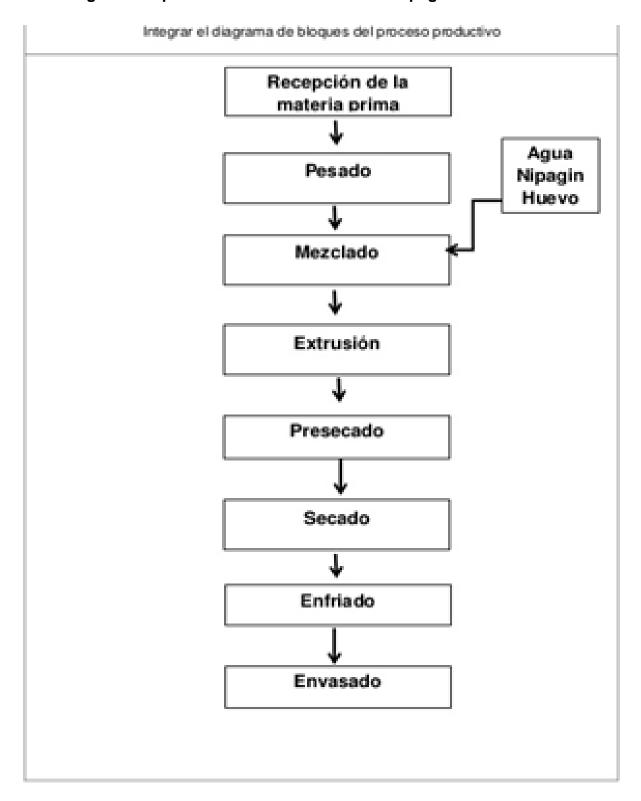
8. COMPETENCIAS DESARROLLADAS Y/O APLICADAS.

Las competencias desarrolladas y aplicadas durante la elaboración de este proyecto o estancia fueron las siguientes:

- ✓ Capacidad de tener liderazgo como supervisor de calidad en el área de calidad.
- ✓ Toma de decisiones durante de acuerdo a los datos obtenidos.
- √ Tener mayor facilidad de expresión oral y escrita.
- ✓ Capacidad de buscar soluciones.
- √ Conocimiento sobre estándares de calidad.
- ✓ Uso de herramientas tecnológicas para la búsqueda análisis.
- ✓ Buen manejo de materiales

9. REFERENCIAS BIBLIOGRAFICAS.

- Kill R, TURNBULL K 2004 tecnologías de la elaboración de pasta y sémola editorial acribia S.A Zaragoza España.
- Avecías, M. 2004. Caracterización y clasificación industrial de las variedades de trigo (trititum aestivum). Tesis de licenciatura de la universidad de Chapingo.
- Becerra, A.P. 2009, estudio del efecto de la uniformización de tamaño de partícula de la semolina sobre los atributos de calidad de la pasta alimenticia, formato spaghetti. Tesis de licenciatura de la universidad nacional autónoma de México.
- Dexter, I.E., Matsuo, R.R., 2010, triples, K.H. 1990. The spaghetti making quality of commercial durum wheat samples with variable alpha-amylose activity. Cereal chemistry.
- Fellows, P.1999. tecnología del proceso de los alimentos: principios y prácticas. Editorial Acribia, S.A., Zaragoza (España)
- Flores, V.V.S 2010. Normalización de métodos para evaluación de calidad de cocción de las pastas largas (spaghetti). Tesis de licenciatura de la universidad Nacional autónoma de México.
- Granito, M., Torres, A., Guerra, M. 2007. Desarrollo y evaluación de la pasta a base de trigo, maíz, yuca y frijol. Revista chilena de nutrición.
- Norma del Codex para la sémola y la harina de trigo duro, Codex standard 178- 1991.


- Hoseney, R. C. 2005. Principios de ciencia y tecnología de los cereales. Editorial Acribia, S.A. Zaragoza España.
- Kent, N.L. 2007. Tecnología de los cereales (introducción para estudiantes de ciencias de los alimentos y agricultura).
- Kruger, j., Matsuo R., Dick, J. 2006. Tecnología de la elaboración de pasta y sémola. Ed. Acribia. Zaragoza, España.
- Rodríguez, S.R. 2006. Las pastas alimenticias. Trends in food science technology.
- Tscheuschner, H.D... 2011. Fundamentos de tecnología de los alimentos. Editorial Acribia, S.A., ZARAGOZA. ESPAÑA.
- Juárez, et. al, 2014.el gano de trigo: características y algunas problemáticas y soluciones a su almacenamiento.
- Morales, M., A., Hernández H., E, Cruz, G., E. 2012. planta procesadora de pastas alimenticias.
- http://www.ugr.es/~mgroman/archivos/TC/mat.pdf. Tecnología de cereales. fecha consultada: 25 de septiembre de 2017
- http://www.fao.org/3/a-a1392s.pdf cereales, leguminosas y productos proteicos vegetales. fecha consultada: 3 de octubre 2017
- http://www.bdigital.unal.edu.co/2781/1/107403.2010.pdf evaluación de las fracciones granulométricas de la harina de sorgo.
 Fecha consultada: 25 de noviembre de 2017
- http://www.salud.gob.mx/unidades/cdi/nom/147ssa16.html Norma oficial mexicana NOM-147-SSA1-1996.
- Fecha consultada: 25 de noviembre de 2017

ANEXO A

Ficha técnica de la sémola de trigo durum

> Diagrama de procesos de la elaboración del spaghetti.

> Requerimientos de calidad del proceso productivo.

Proceso	Normas requeridas de calidad	Estandar de l	Estándar de Calidad		
	Entrada				
Materia prima Sémola de trigo	1NORMA OFICIAL MEXICANA NOM-147-SSA1- 1996, bienes y servicios.	Aditivo	Limite máximo en mg/kg.		
durum	Cereales y sus productos. Harinas de cereales, sémolas o	Peróxido de benzollo	100		
	semolina. Alimentos a base de cereales. de semillas	Peróxido de calcio	50		
	comestibles, harinas, sémolas o semolina o sus mezclas. Productos de panificación. Disposiciones y especificaciones sanitarias y nutrimentales.	Diáxido de cloro	30, en harina para productos fermentados con levadura		
	numericales.	Cloro	1500, en harina para		
	NOM-247-SSA1- 208.productos y servicios. Cereales y sus productos. Cereales, harinas de cereales, sémolas o semolina. Alimentos a base de: cereales, semillas		pasteles de elevada proporción de azúcar y materia grasa		
	comestibles, de harinas, sémolas o semolinas o sus mezclas. Productos de	Azodicarbonamida	45, en harina para pan leudado		
nsumos 1Agua para proceso 2.Colorante amarillo Naftol-s 3Nipagin sódico nidrosoluble	1NORMA Oficial Mexicana NOM 230 SSA1-2002, Salud ambiental. Agua para uso y consumo Humano, requisitos sanitarios que se deba de cumplir en los sistemas de abastecimiento publico	Características del agua el proceso			
	NOM-247-SSA1- 208. productos y servicios. Cereales y sus productos. Cereales, harinas de cereales, sémolas o semolina. Alimentos a base de: cereales, semillas comestibles, de harinas, sémolas o semolinas o sus mezclas. Productos de panificación. Disposiciones y				
Suministros	, , , , , , , , , , , , , , , , , , , ,				
	Normas Electricidad	Caracterist	icas		
Agua potable	NOM-064-SCFI-2000				
Electricidad	NOM-058-SCFI-1999				
Vapor	NOM-063-SCFI-2003				
	NOM-003-SCFI-2000				

ANEXO B

> TABLA DE LA DETERMINACIÓN DE LAS HUMEDADES.

FECHA	FORMATO	Pich	Pm	Pchm	%Н
04/09/2017	SPAGHETTI MS	8.1123	2.0004	9.8471	12.58
13/10/2017	SPAGHETTI MS	11.3429	1.9998	13.1345	10.4
19/10/2017	SPAGHETTI MS	8.3926	2	10.1735	10.91
13/11/2017	SPAGHETTI MS	8.9446	1.9997	10.7162	11.4
30/11/2017	SPAGHETTI MS	8.0738	2.0003	9.8405	11.28
16/12/2017	SPAGHETTI MS	8.2959	2.0004	9.8423	12.04
22/12/2017	SPAGHETTI MS	8.8989	2.0003	10.6708	11.41
27/09/2017	SPAGHETTI MM	8.1696	2.0004	9.9373	11.64
28/09/2017	SPAGHETTI MM	8.3859	2.0001	10.1438	12.07
05/10/2017	SPAGHETTI MM	8.3809	1.9999	10.1634	10.85
30/10/2017	SPAGHETTI MM	8.481	1.9997	10.2565	11.21
21/11/2017	SPAGHETTI MM	8.3488	2.0002	10.1199	11.45
23/11/2017	SPAGHETTI MM	8.4787	2.0003	10.2683	10.56
25/11/2017	SPAGHETTI MM	8.0731	1.9997	9.843	11.48
11/09/2017	SPAGHETTI IP	8.2699	2.0001	10.0233	12.35
12/09/2017	SPAGHETTI IP	8.3428	1.9996	10.1611	11.52
13/09/2017	SPAGHETTI IP	11.3863	1.9996	13.1552	11.53
14/09/2017	SPAGHETTI IP	11.3846	2.0002	13.1494	11.74
18/09/2017	SPAGHETTI IP	8.3817	2.0001	10.1603	11.08
19/09/2017	SPAGHETTI IP	11.1666	2.0001	12.458	11.43
20/09/2017	SPAGHETTI IP	8.0229	2	9.8058	10.89
21/09/2017	SPAGHETTI IP	8.083	2.0001	9.8575	11.27
26/09/2017	SPAGHETTI IP	8.0829	2.0004	9.8611	12.5
27/09/2017	SPAGHETTI IP	8.2311	2.0004	9.9017	12.98
04/10/2017	SPAGHETTI IP	8.4809	2.0004	10.2555	11.28
10/10/2017	SPAGHETTI IP	8.2716	2	10.0584	10.66
11/10/2017	SPAGHETTI IP	8.3819	1.9998	10.2516	10.87
18/10/2017	SPAGHETTI IP	8.0683	1.9998	9.8473	11.04
26/10/2017	SPAGHETTI IP	8.5447	1.9999	10.3262	10.91
31/10/2017	SPAGHETTI IP	8.0688	2.0002	9.845	11.19
07/11/2017	SPAGHETTI IP	11.1686	2.0002	12.9462	11.12
15/11/2017	SPAGHETTI IP	9.0214	1.9998	10.7422	11.39
25/11/2017	SPAGHETTI IP	7.9316	1.9999	9.7019	11.45
12/12/2017	SPAGHETTI IP	8.2107	1.9999	9.9717	12.01
14/12/2017	SPAGHETTI IP	8.0336	2	9.8024	11.5
18/12/2017	SPAGHETTI IP	11.3846	2.0002	13.1499	11.78
20/12/2017	SPAGHETTI IP	8.1306	2.0004	9.8097	11.49

Dónde: Pich= peso inicial de la charola, pm= peso de la muestra, Pchm= peso de la charola con la muestra y %H= porcentaje de almidón.

> TABLA DE DETERMINACIÓN DEL PORCENTAJE DE ALMIDÓN DEL SPAGHETTI MENU SOLUTION

					PORCENTA	AJE DE ALM	IDÓN DE S	PAGHETTI M	1ENÚ SOLU	TION A 120	οC			
No.	MUESTRA	MARCA	FECHA	# CRISOL	Picrisol (gr)	Pcrisolm después del secado (gr)	TIEMPO DE COCCIÓN (min)	% HUMEDAD	FACTOR DE DILUSIÓN (ml)	W DEL ALMIDÓN	DILUSIÓN DEL ALMIDON	% DE ALMIDÓN	DIFERENCIA	PROMEDIO % DE ALMIDÓN
1	SPAGHETTI	MS	04/09/2017	1	67.794	68.0483	12:40	11 61	30	0.2543	7.629	12.118	0.0057	12.289
1	SPAGRETTI	IVIS	04/09/2017	2	65.4335	65.6935	12.40	11.64	30	0.26	7.8	12.46	0.0057	12.209
2	SPAGHETTI	MS	12/10/2017	1	44.7499	45.0732	10:34	10.67	20	0.3233	6.466	9.792	0.0027	0.946
2	SPAGRETTI	IVIS	13/10/2017	2	50.1602	50.4862	10:34	10.67	20	0.326	6.52	9.9	0.0027	9.846
3	CDACHETTI	MS	10/10/2017	1	44.7653	44.9897	10:45	10.01	27	0.2244	6.0588	8.9776	0.0027	0.0505
3	SPAGHETTI	IVIS	19/10/2017	2	68.1854	68.4125	10:45	10.91	21	0.2271	6.1317	9.1234	0.0027	9.0505
4	CDACHETTI	NAC	12/11/2017	1	67.8301	68.0754	11.12	11.4	20	0.2453	4.906	6.672	0.0016	6.704
4	SPAGHETTI	MS	13/11/2017	2	77.8506	78.0975	11:12	11.4	20	0.2469	4.938	6.736	0.0016	6.704
5	CDACHETTI	MS	20/11/2017	1	69.2114	69.4525	11.52	11 20	26	0.2411	6.2686	9.3972	0.0021	0.4779
)	SPAGHETTI	IVIS	30/11/2017	2	42.5084	42.7526	11:53	11.28	20	0.2442	6.3492	9.5584	0.0031	9.4778
	CDACHETTI	N.4C	46/42/2047	1	104.4957	104.7155	12.00	12.04	20	0.2198	6.3742	9.6084	0.045	10.0424
6	SPAGHETTI	MS	16/12/2017	2	91.6184	91.8532	13:00	12.04	29	0.2348	6.8092	10.4784	0.015	10.0434
_	CDACHETTI	N.4C	22/42/2047	1	50.1636	50.4622	40.25	44.44	20	0.2986	5.972	8.804	0.0022	0.05
/	SPAGHETTI	MS	22/12/2017	2	67.8105	68.1114	10:25	11.41	20	0.3009	6.018	8.896	0.0023	8.85

Dónde: Pi crisol= peso inicial del crisol a peso constante, Pcrisolm=peso total del crisol con la muestra después del secado, W= peso del almidón.

> TABLA DE DETERMINACIÓN DEL PORCENTAJE DE ALMIDÓN DEL SPAGHETTI MEMBER MARK

					РО	RCENTAJE [DE ALMIDĆ	N DE SPAGI	HETTI A 120) _ō C				
No.	MUESTRA	MARCA	FECHA	# CRISOL	Picrisol inicial (gr)	Pcrisolm despues del secado (gr)	TIEMPO DE COCCIÓN (min)	% HUMEDAD	FACTOR DE DILUSIÓN (ml)	W DEL ALMIDÓN	DILUSIÓN DEL ALMIDON	% DE ALMIDÓN	DIFERENCIA	PROMEDIO % DE ALMIDÓN
1	SPAGHETTI	MM	27/09/2017	1	77.8518	78.0623	10:53	11.64	30	0.2105	6.315	9.49	0.0062	9.676
1	SPAGHETTI	IVIIVI	27/09/2017	2	104.2702	104.4869	10.55	11.04	30	0.2167	6.501	9.862	0.0002	3.070
2	SPAGHETTI	MM	28/09/2017	1	50.1599	50.3979	10:14	12.07	27	0.238	6.426	9.712	0.0026	9.7822
	SPAGHETTI	IVIIVI	26/09/2017	2	44.7693	45.0099	10.14	12.07	27	0.2406	6.4962	9.8524	0.0026	9.7622
3	SPAGHETTI	MM	05/10/2017	1	77.8514	78.0828	10:46	10.85	25	0.2314	5.785	8.43	0.0083	8.6375
3	SPAGHETTI	IVIIVI	05/10/2017	2	42.5254	42.7651	10.40	10.65	23	0.2397	5.9925	8.845	0.0065	0.0373
4	SPAGHETTI	MM	30/10/2017	1	50.1612	50.3539	10:35	11.21	30	0.1927	5.781	8.422	0.0016	8.47
4	SPAGHETTI	IVIIVI	30/10/2017	2	91.6202	91.8145	10.55	11.21	30	0.1943	5.829	8.518	0.0010	0.47
5	SPAGHETTI	MM	21/11/2017	1	67.8134	68.0363	10:28	11.45	27	0.2229	6.0183	8.8966	0.0004	8.9074
3	SPAGHETTI	IVIIVI	21/11/2017	2	104.5041	104.7274	10.28	11.43	21	0.2233	6.0291	8.9182	0.0004	0.3074
6	SPAGHETTI	N 4 N 4	22/11/2017	1	69.1241	69.3847	11:25	10.56	25	0.2606	6.515	9.89	0.0002	9.895
0	SPAGHETTI	MM	23/11/2017	2	67.813	68.0738	11.25	10.30	23	0.2608	6.52	9.9	0.0002	3.033
7	SPAGHETTI	MM	25/11/2017	1	68.1753	68.4157	11:42	11.48	24	0.2404	5.7696	8.3992	0.0006	8.4136
,	3F AGRETTI	IVIIVI	23/11/2017	2	44.7585	44.9995	11.42	11.40	24	0.241	5.784	8.428	0.0000	0.4130

Dónde: Pi crisol= peso inicial del crisol a peso constante, Pcrisolm=peso total del crisol con la muestra después del secado, W= peso del almidón.

> TABLA DE DETERMINACIÓN DEL PORCENTAJE DE ALMIDÓN DEL SPAGHETTI IP

MUESTRA	FECHA	# CRISOL	Picrisol inicial (gr)	Pcrisolm después del secado (gr)	TIEMPO DE COCCIÓN (min)	% HUMEDAD	FACTOR DE DILUSIÓN (ml)	W DEL ALMIDÓN	DILUSIÓN DEL ALMIDON	% DE ALMIDÓN	DIFERENCIA	PROMEDIO % DE ALMIDÓN
SPAGHETTI	11/09/2017	1	42.5245	42.7653	12:25	12.35	29	0.2408	6.9832	10.8264	0.0013	10.8641
31 AGITETTI	11/03/2017	2	65.4391	65.6812	12.25	12.55	23	0.2421	7.0209	10.9018	0.0013	10.0041
SPAGHETTI	12/09/2017	1	100.6826	100.8537	11:40	11.52	27	0.1711	4.6197	6.0994	0.0056	6.2506
31 AGHETTI	12/03/2017	2	77.8508	78.0275	11.40	11.52	2,	0.1767	4.7709	6.4018	0.0030	0.2300
SPAGHETTI	13/09/2017	1	42.523	42.7606	10:30	11.53	25	0.2376	5.94	8.74	0.0052	8.87
31 AGHETTI	13/03/2017	2	50.1646	50.4074	10.50	11.55	23	0.2428	6.07	9	0.0032	0.07
SPAGHETTI	14/09/2017	1	69.0282	69.2697	11:55	11.74	20	0.2415	4.83	6.52	0.0007	6.534
31 AGHETTI	14/03/2017	2	91.6162	91.8584	11.55	11.74	20	0.2422	4.844	6.548	0.0007	0.554
SPAGHETTI	18/09/2017	1	68.0352	68.2387	10:19	11.08	21	0.2035	4.2735	5.407	0.0049	5.5099
31 AGHETTI	10/03/2017	2	77.854	78.0624	10.15	11.00	21	0.2084	4.3764	5.6128	0.0043	3.3033
SPAGHETTI	19/09/2017	1	91.6146	91.8518	10:24	11.43	22	0.2372	5.2184	7.2968	0.0007	7.3122
SINGHETH	13/03/2017	2	67.794	68.0319	10.24	11.43		0.2379	5.2338	7.3276	0.0007	7.0122
SPAGHETTI	20/09/2017	1	68.0232	68.2795	10:14	10.89	20	0.2563	5.126	7.112	0.009	7.292
SINGHETH	20,03,201,	2	67.7936	68.0589	10.14	10.03	20	0.2653	5.306	7.472	0.005	7.232
SPAGHETTI	21/09/2017	1	100.683	100.9408	10:41	11.27	20	0.2578	5.156	7.172	0.0053	7.278
31710112111	21,03,201,	2	91.6152	91.8783	10.11	11.27	20	0.2631	5.262	7.384	0.0033	7.1270
SPAGHETTI	26/09/2017	1	40.4711	40.7211	10:58	12.5	25	0.25	6.25	9.36	0.0014	9.395
31710112111	20,03,201,	2	41.9321	42.1835	10.50	12.3	23	0.2514	6.285	9.43	0.0011	3.030
SPAGHETTI	27/09/2017	1	35.4896	35.8662	13:10	12.98	20	0.3766	7.532	11.924	0.0197	12.318
SINGHETH	27/03/2017	2	44.7715	45.1678	15.10	12.50	20	0.3963	7.926	12.712	0.0137	12.510
SPAGHETTI	04/10/2017	1	42.527	42.7315	11:25	11.28	22	0.2045	4.499	5.858	0.0042	5.9504
31 AGHETTI	04/10/2017	2	44.7725	44.9812	11.25	11.20	22	0.2087	4.5914	6.0428	0.0042	3.3304
SPAGHETTI	10/10/2017	1	69.1282	69.3491	10:35	10.66	20	0.2209	4.418	5.696	0.0641	6.978
31 Adrietti	10/10/2017	2	91.5162	91.8012	10.55	10.00	20	0.285	5.7	8.26	0.0041	0.576
SPAGHETTI	11/10/2017	1	102.5681	102.7912	11:07	10.87	25	0.2231	5.5775	8.015	0.0001	8.0175
31 AGITETTI	11,10,2017	2	98.5409	98.7641	11.07	10.07	23	0.2232	5.58	8.02	0.0001	0.0175
SPAGHETTI	18/10/2017	1	43.1364	43.4101	10:14	11.04	20	0.2737	5.474	7.808	0.018	8.168
J. AGIILIII	10/10/2017	2	35.4917	35.7834	10.14	11.04	20	0.2917	5.834	8.528	0.010	0.100
SPAGHETTI	26/10/2017	1	77.857	78.1015	11:15	10.91	20	0.2445	4.89	6.64	0.0722	8.084

		2	100.683	100.9997				0.3167	6.334	9.528		
CDACHETTI	24/40/2017	1	67.7943	68.0125	12.00	11 10	26	0.2182	5.6732	8.2064	0.0073	0.2062
SPAGHETTI	31/10/2017	2	40.4812	40.7067	12:00	11.19	26	0.2255	5.863	8.586	0.0073	8.3962
CDACHETTI	07/11/2017	1	65.4419	65.7236	11.45	11 12	20	0.2817	5.634	8.128	0.0038	9 204
SPAGHETTI	0//11/201/	2	91.6057	91.8912	11:45	11.12	20	0.2855	5.71	8.28	0.0038	8.204
CDACHETTI	15/11/2017	1	69.1279	69.4337	11.12	11 20	20	0.3058	6.116	9.092	0.0043	0.170
SPAGHETTI	15/11/2017	2	102.5676	102.8777	11:12	11.39	20	0.3101	6.202	9.264	0.0043	9.178
SPAGHETTI	25/11/2017	1	100.683	100.9251	10.20	11.45	25	0.2421	6.0525	8.965	0.0024	9.025
SPAGHETTI	25/11/2017	2	40.4509	40.6954	10:39	11.45	25	0.2445	6.1125	9.085	0.0024	9.025
SPAGHETTI	12/12/2017	1	91.5979	91.8993	10:20	12.01	20	0.3014	6.028	8.916	0.0018	8.952
SPAGNETH	12/12/2017	2	41.9021	42.2053	10.20	12.01	20	0.3032	6.064	8.988	0.0018	6.332
SPAGHETTI	14/12/2017	1	35.4874	35.8111	11:55	11.5	20	0.3237	6.474	9.808	0.0045	9.898
SPAGHETTI	14/12/2017	2	44.7719	45.1001	11.55	11.5	20	0.3282	6.564	9.988	0.0043	3.030
SPAGHETTI	18/12/2017	1	67.7943	68.0674	10:16	11.78	20	0.2731	5.462	7.784	0.0046	7.876
SPAGRETTI	10/12/2017	2	40.4819	40.7596	10:16	11./8	20	0.2777	5.554	7.968	0.0046	7.070
SPAGHETTI	20/12/2017	1	65.4623	65.7317	10:23	11.49	20	0.2694	5.388	7.636	0.0052	7.74
J. AGIILIII	20/12/2017	2	100.68	100.9546	10.23	11.43	20	0.2746	5.492	7.844	0.0032	7.74

Dónde: Pi crisol= peso inicial del crisol a peso constante, Pcrisolm=peso total del crisol con la muestra después del secado, W= peso del almidón.

> DIMENSIONES DEL SPAGHETTI (MS)

	SPAGH	IETTI	SPAGH	IETTI	SPAGH	IETTI	SPAGH	ETTI	SPAGH	IETTI	SPAGH	ETTI		SPAGHETTI
	04/10/20	017 A	13/10/2	2017	19/10/2	2017	13/11/2	017	30/11/2	2017	16/12/2	017		22/12/2017
	MS	3	MS	}	MS	3	MS		MS	3	MS			MS
	PT	-	PT	-	PT	-	PT		PT		PT			PT
No datos	Calibre (mm) (1.75-1.85)	Largo (cm) 25-26	Calibre (mm) (1.75-1.85)	Largo (cm) 25-26	Calibre (mm) (1.75-1.85)	Largo (cm) 25-26	Calibre (mm) (1.75-1.85)	Largo (cm) 25-26	Calibre (mm) (1.75-1.85)	Largo (cm) 25-26	Calibre (mm) (1.75-1.85)	Largo (cm) 25-26	Calibre (mm) (1.75-1.85)	Largo (cm) 25-26
1	1.843	25.5	1.812	25.5	1.778	25.5	1.841	25.4	1.809	25.4	1.794	25.8	1.755	25.1
2	1.798	25.5	1.876	25.6	1.778	25.5	1.811	25.6	1.806	25.6	1.841	25.3	1.778	25.5
3	1.812	25.3	1.751	25.8	1.79	25.6	1.855	25.4	1.812	25.4	1.814	26	1.797	25.6
4	1.837	25.8	1.75	25.3	1.789	25.3	1.817	25.8	1.829	25.8	1.751	25.4	1.749	25.7
5	1.851	25.9	1.86	25.4	1.735	25.3	1.858	24.4	1.829	24.4	1.813	25	1.754	25.7
6	1.822	25.7	1.765	25.5	1.804	25	1.819	25.1	1.83	25.1	1.777	25.6	1.798	25.6
7	1.797	25.1	1.78	25	1.756	25	1.777	25.5	1.79	25.5	1.759	25.7	1.788	25.4
8	1.772	25.9	1.843	25.7	1.815	25.3	1.847	25.3	1.808	25.3	1.779	25.8	1.801	25.4
9	1.785	25.9	1.836	25.5	1.784	25.7	1.807	25.4	1.778	25.4	1.798	25.4	1.8	25.7
10	1.767	25.7	1.842	25.3	1.787	25.1	1.829	25.5	1.821	25.5	1.797	25.7	1.757	25.3
11	1.766	25.1	1.822	25.4	1.771	25.6	1.791	25.5	1.772	25.5	1.791	25.3	1.798	25.3
12	1.809	26	1.828	25.9	1.74	25.2	1.789	25.6	1.741	25.6	1.73	25.6	1.809	25.7
13	1.806	25.7	1.843	25.5	1.787	25.6	1.783	25.9	1.762	25.9	1.774	25.6	1.821	25.1
14	1.821	25.6	1.817	25.8	1.78	25.4	1.803	25.3	1.725	25.3	1.78	26	1.756	25
15	1.822	25.6	1.858	24.9	1.766	25.5	1.818	25.8	1.8	25.8	1.755	25.8	1.799	26
16	1.791	25.4	1.819	25.3	1.741	25.5	1.841	25.5	1.741	25.5	1.778	25.7	1.749	25.8
17	1.798	24.8	1.777	25.4	1.79	25.5	1.802	25.3	1.804	25.3	1.797	25.6	1.827	25.7
18	1.852	25.6	1.847	25.7	1.778	25.5	1.764	25.7	1.771	25.7	1.749	25.3	1.845	25.6
19	1.786	25.6	1.863	25.5	1.781	25	1.824	26	1.794	26	1.757	25.4	1.815	25.3
20	1.816	25.4	1.794	25.8	1.809	25.1	1.765	25.5	1.772	25.5	1.778	25.5	1.796	25.4
promedio	1.81	25.56	1.82	25.49	1.78	25.36	1.81	25.48	1.79	25.48	1.78	25.58	1.79	25.50
máx	1.852	26	1.876	25.9	1.815	25.7	1.858	26	1.83	26	1.841	26	1.845	26
mín	1.766	24.8	1.75	24.9	1.735	25	1.764	24.4	1.725	24.4	1.73	25	1.749	25
mediana	1.81	25.60	1.83	25.50	1.78	25.45	1.81	25.50	1.80	25.50	1.78	25.60	1.80	25.55
desv std	0.026	0.307	0.038	0.259	0.022	0.226	0.028	0.337	0.031	0.337	0.026	0.253	0.028	0.261
Cumplim Especific	90	0	80	0	85	0	90	0	85	0	90	0	90	0
No datos	20	20	20	20	20	20	20	20	20	20	20	20	20	20
>1.85	2	20	4	20	0	20	2	20	0	20	0	20	0	20
<1.75	0	0	0	0	3	0	0	0	3	0	2	0	2	0

> DIMENSIONES DEL SPAGHETTI (MM)

	SPAGE	HETTI	SPAGH	ETTI	SPAGH	ETTI	SPAGH	ETTI	SPAGE	IETTI	SPAGH	IETTI	SPAGH	IETTI
	27/09/	2017	28/09/2	017	05/10/2	2017	30/10/2	2017	21/11/2	2017	23/11/2	2017	25/11/2	2017
	M	N	MM		MM	1	MM	l	MN	Л	MN	1	MN	1
	P	Γ	PT		PT	•	PT		PT	Γ	PT	-	PT	-
No datos	Calibre (mm) (1.75-1.85)	Largo (cm) 25-26	Calibre(mm) (1.75-1.85)	Largo (cm) 25-26	Calibre (mm) (1.75-1.85)	Largo (cm) 25-26	Calibre (mm) (1.75-1.85)	Largo (cm) 25-26	Calibre (mm) (1.75-1.85)	Largo (cm) 25-26	Calibre (mm) (1.75-1.85)	Largo (cm) 25-26	Calibre (mm) (1.75-1.85)	Largo (cm) 25-26
1	1.773	24.5	1.767	25.4	1.723	25	1.773	24.5	1.763	24.5	1.783	25.4	1.855	24.5
2	1.765	25.8	1.772	25.6	1.82	25.3	1.765	25.8	1.73	25.8	1.767	25.6	1.817	25.8
3	1.769	25.3	1.811	25.4	1.831	25.6	1.769	25.3	1.746	25.3	1.76	25.4	1.858	25.3
4	1.765	24.8	1.796	25.8	1.815	26	1.765	24.8	1.798	24.8	1.756	25.8	1.819	24.8
5	1.781	24.9	1.806	24.4	1.824	25.8	1.781	24.9	1.776	24.9	1.807	24.4	1.777	24.9
6	1.745	25	1.75	25.1	1.854	25.5	1.745	25	1.749	25	1.764	25.1	1.847	25
7	1.757	25.2	1.814	25.5	1.803	25.2	1.757	25.2	1.793	25.2	1.788	25.5	1.807	25.2
8	1.76	24.7	1.808	25.3	1.831	26	1.841	24.7	1.759	24.7	1.762	25.3	1.829	24.7
9	1.785	25.5	1.778	25.4	1.835	26	1.796	25.5	1.754	25.5	1.759	25.4	1.791	25.5
10	1.761	25.5	1.821	25.5	1.812	25.3	1.833	25.5	1.805	25.5	1.755	25.5	1.789	25.5
11	1.774	25.8	1.772	25.5	1.832	25.8	1.795	25.8	1.756	25.8	1.757	25.5	1.783	25.8
12	1.752	25.7	1.716	25.6	1.816	25.5	1.784	25.7	1.73	25.7	1.782	25.6	1.803	25.7
13	1.804	25.3	1.757	25.9	1.818	25.4	1.773	25.3	1.804	25.3	1.754	25.9	1.818	25.3
14	1.741	25.5	1.778	25.3	1.807	25.4	1.862	25.5	1.741	25.5	1.73	25.3	1.841	25.5
15	1.762	25.6	1.791	25.8	1.841	25.3	1.762	25.6	1.762	25.6	1.774	25.8	1.796	25.6
16	1.725	25.7	1.708	25.5	1.834	25.5	1.725	25.7	1.725	25.7	1.78	25.5	1.833	25.7
17	1.8	25.1	1.802	25.3	1.838	25	1.8	25.1	1.8	25.1	1.755	25.3	1.795	25.1
18	1.741	25.7	1.764	25.7	1.802	25.3	1.741	25.7	1.741	25.7	1.778	25.7	1.784	25.7
19	1.804	25.1	1.824	26	1.838	25.6	1.804	25.1	1.804	25.1	1.824	26	1.773	25.1
20	1.771	25.3	1.765	25.5	1.827	25.7	1.771	25.3	1.771	25.3	1.765	25.5	1.771	25.3
promedio	1.77	25.30	1.78	25.48	1.82	25.51	1.78	25.30	1.77	25.30	1.77	25.48	1.81	25.30
máx	1.804	25.8	1.824	26	1.854	26	1.862	25.8	1.805	25.8	1.824	26	1.858	25.8
mín	1.725	24.5	1.708	24.4	1.723	25	1.725	24.5	1.725	24.5	1.73	24.4	1.771	24.5
mediana	1.77	25.30	1.78	25.50	1.83	25.50	1.77	25.30	1.76	25.30	1.76	25.50	1.81	25.30
desv std	0.021	0.383	0.032	0.337	0.027	0.304	0.034	0.383	0.027	0.383	0.021	0.337	0.028	0.383
Cumplim Especific	80	0	90	0	90	0	80	0	65	0	95	0	90	0
No datos	20	20	20	20	20	20	20	20	20	20	20	20	20	20
>1.85	0	20	0	20	1	20	1	20	0	20	0	20	2	20
<1.75	4	0	2	0	1	0	3	0	7	0	1	0	0	0

> DIMENSIONES DEL SPAGHETTI (IP)

	SPAGH	ETTI	SPAG	HETTI	SPAG	HETTI	SPAG	HETTI	SPAG	HETTI	SPAGE	IETTI	SPAGE	IETTI	SPAGE	1ETTI	SPAG	HETTI	SPAG	HETTI
	11/09/2	017	12/09/	/2017	13/09/	/2017	14/09	/2017	18/09	/2017	19/09/	2017	20/09/	2017	26/09/	2017	27/09	/2017	04/10	0/2017
	IP		IF)	IF)	H)	II.	Р	IP	•	IP	•	IP)	II)	-	Р
	PT		P	Т	P.	Т	Р	Т	Р	Т	P	Γ	P	Γ	P	Γ	Р	Т	F	PT
No datos	Calibre (mm) (1.75-1.85)	Largo (cm) 25-26	Calibre (mm) (1.75-1.85)	Largo (cm) 25-26	Calibre (mm) (1.75- 1.85)	Largo (cm) 25-26	Calibre (mm) (1.75- 1.85)	Largo (cm) 25-26	Calibre (mm) (1.75- 1.85)	Largo (cm) 25-26	Calibre (mm) (1.75-1.85)	Largo (cm) 25-26	Calibre (mm) (1.75-1.85)	Largo (cm) 25-26						
1	1.809	24.9	1.819	25.5	1.83	25,1	1.817	25.7	1.773	24.8	1.82	25.8	1.812	25.5	1.723	25	1.756	25	1.75	25.3
2	1.797	25.6	1.781	25	1.812	25.5	1.807	25.8	1.79	25.7	1.787	25.5	1.876	25.6	1.82	25.3	1.785	25.6	1.778	25.5
3	1.763	24.9	1.807	25	1.817	25.3	1.86	25.9	1.769	24.9	1.796	25.9	1.843	25.8	1.831	25.6	1.799	25.5	1.775	25.9
4	1.821	25.9	1.828	25.4	1.794	25.6	1.801	24.4	1.787	25.8	1.781	25.6	1.841	25.3	1.815	26	1.75	25.6	1.795	25.7
5	1.825	26	1.781	25.5	1.839	25.7	1.845	25.7	1.792	25.8	1.756	24.9	1.839	25.4	1.824	25.8	1.803	25.5	1.793	25.6
6	1.804	25.8	1.852	25.4	1.78	25.8	1.804	24.4	1.831	25.4	1.798	25.4	1.834	25.5	1.854	25.5	1.811	25.5	1.8	25.6
7	1.843	25.3	1.822	24.9	1.797	25.6	1.834	25.9	1.826	25.4	1.796	25.6	1.828	25	1.803	25.2	1.778	25.6	1.833	25
8	1.814	25.1	1.816	25.7	1.815	25.9	1.828	25.8	1.804	25.3	1.783	25	1.843	25.7	1.831	26	1.786	25.5	1.841	25.1
9	1.805	25.6	1.781	25.3	1.853	25.7	1.813	25	1.829	25.7	1.777	25.3	1.836	25.5	1.835	26	1.767	25.4	1.777	25.8
10	1.791	24	1.799	25.3	1.826	25.7	1.81	25.7	1.847	25.8	1.801	25.6	1.842	25.3	1.812	25.3	1.804	25	1.816	25.3
11	1.792	25.2	1.811	25.4	1.839	25.4	1.841	25.3	1.836	25.6	1.802	26	1.822	25.4	1.832	25.8	1.796	26	1.79	25.7
12	1.85	24.3	1.787	25.4	1.811	25.6	1.811	24.2	1.808	25.3	1.836	25.3	1.828	25.9	1.816	25.5	1.754	25.9	1.762	25.3
13	1.827	25.6	1.796	25.9	1.838	24.6	1.855	25.2	1.795	25.5	1.804	25.4	1.843	25.5	1.818	25.4	1.753	25.5	1.759	25.4
14	1.845	25.8	1.814	25.3	1.79	25	1.817	25.2	1.804	25	1.856	25.1	1.829	25.8	1.807	25.4	1.783	25.6	1.786	25.1
15	1.815	25.1	1.806	25	1.837	25.8	1.858	25.7	1.79	25.2	1.824	25.4	1.799	24.9	1.841	25.3	1.788	26.1	1.753	25.4
16	1.796	25.1	1.858	25.3	1.859	26	1.819	25.1	1.78	25.6	1.836	25.3	1.833	25.3	1.834	25.5	1.787	25.6	1.756	25.3
17	1.759	25.5	1.801	25	1.829	25.7	1.777	25.6	1.802	25.3	1.814	25.9	1.796	25.4	1.838	25	1.762	25.7	1.831	25.9
18 19	1.823 1.798	25.5 25.6	1.832	25.4 25.7	1.811	25 25	1.847	25.9	1.868	25.7 25.9	1.852	25.3 25.1	1.8 1.863	25.7 25.5	1.802	25.3	1.752	24 25.4	1.813	25.3 25.1
			1.828		1.796		1.807	25.9	1.785		1.843	25.1			1.838	25.6	1.718		1.814	25.1
20	1.789	25.7	1.796	25.8	1.821	25.4	1.829	25.8	1.884	25.4	1.812		1.794	25.8	1.827	25.7	1.756	25.5	1.852	
promedio	1.81	25.33	1.81	25.36	1.82	25.49	1.82	25.41	1.81	25.46	1.81	25.43	1.83	25.49	1.82	25.51	1.77	25.48	1.79	25.43
máx	1.85	26	1.858	25.9	1.859	26 24.6	1.86	25.9	1.884	25.9 24.8	1.856	26	1.876 1.794	25.9	1.854 1.723	26	1.811 1.718	26.1	1.852	25.9 25
mín 	1.759 1.81	24 25.50	1.781	24.9 25.40	1.78 1.82		1.777 1.82	24.2	1.769 1.80		1.756	24.9 25.40		24.9 25.50	1.723	25 25.50		24	1.75 1.79	
mediana	0.024	0.517	1.81 0.022	0.282	0.021	25.60 5.711	0.022	25.70 0.546	0.031	25.45 0.314	1.80 0.027	0.308	1.83 0.022	0.259	0.027	0.304	1.78 0.024	25.50 0.436	0.031	25.35 0.275
desv std Cumplim																				
Especific	100	0	90	0	90	0	85	0	90	0	90	0	90	0	90	0	95	0	95	0
No datos	20	20	20	20	20	19	20	20	20	20	20	20	20	20	20	20	20	20	20	20
>1.85	0	20	2	20	2	19	3	20	2	20	2	20	2	20	1	20	0	20	1	20
<1.75	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0

SPAG	HETTI	SPAG	HETTI	SPAG	HETTI	SPAG	HETTI	SPAG	HETTI	SPAC	HETTI	SPAG	HETTI	SPAG	HETTI								
10/10	/2017	11/10	/2017	18/10	/2017	26/10	/2017	31/10	/2017	07/1	1/2017	15/1	1/2017	25/11	/2017	12/12	/2017	14/12	/2017	18/12	/2017	20/12	/2017
I	Р	П	P	IF	P	- II	P	H)		IP		IP	П	P	- II	P	II	P	П)	IF)
F	T	Р	Т	Р	Т	Р	Т	Р	Т	ı	PT	F	PT	Р	Т	Р	Т	Р	Т	Р	T	P	Т
Calibre (mm) (1.75-1.85)	Largo (cm) 25-26	Calibre (mm) (1.75-1.85)	Largo (cm) 25-26	Calibre (mm) (1.75- 1.85)	Largo (cm) 25-26	Calibre (mm) (1.75- 1.85)	Largo (cm) 25-26	Calibre (mm) (1.75-1.85)	Largo (cm) 25-26	Calibre (mm) (1.75- 1.85)	Largo (cm) 25-26	Calibre (mm) (1.75-1.85)	Largo (cm) 25-26										
1.792	25	1.813	25.5	1.792	25	1.753	25.4	1.767	25.4	1.792	24.5	1.796	24.5	1.788	25.4	1.759	25.4	1.81	25.8	1.833	25.7	1.821	25.5
1.768	25.6	1.768	25.1	1.781	25	1.801	25.5	1.772	25.6	1.81	25.8	1.806	25.8	1.812	25.6	1.755	25.6	1.803	25.6	1.795	25.6	1.825	25.3
1.75	25.5	1.776	25.6	1.761	25	1.809	25.5	1.811	25.4	1.788	25.3	1.75	25.3	1.758	25.4	1.757	25.4	1.799	25.6	1.784	25.4	1.804	25.3
1.814	25.6	1.786	25.6	1.827	25	1.782	25.5	1.796	25.8	1.819	24.8	1.814	24.8	1.8	25.8	1.782	25.8	1.768	25.8	1.773	25.4	1.843	25.7
1.767	25.5	1.778	25	1.777	25.3	1.779	25.7	1.806	24.4	1.814	24.9	1.808	24.9	1.752	24.4	1.754	24.4	1.803	25.3	1.862	25.8	1.814	25.5
1.783	25.5	1.811	25.2	1.778	25.4	1.791	25.6	1.75	25.1	1.827	25	1.778	25	1.792	25.1	1.73	25.1	1.765	24.8	1.827	24.4	1.805	25.7
1.799	25.6	1.795	25.2	1.806	25.6	1.777	25.7	1.814	25.5	1.795	25.2	1.821	25.2	1.794	25.5	1.774	25.5	1.75	24.9	1.823	25.1	1.791	25.6
1.79	25.5	1.814	25.5	1.825	25.5	1.774	25.6	1.808	25.3	1.796	24.7	1.772	24.7	1.841	25.3	1.78	25.3	1.789	25	1.814	25.5	1.792	25.4
1.793	25.4	1.808	25.4	1.765	25	1.787	25.5	1.778	25.4	1.778	25.5	1.716	25.5	1.778	25.4	1.755	25.4	1.769	25.2	1.827	25.3	1.85	25.5
1.802	25	1.806	25.4	1.791	25.4	1.8	25.6	1.821	25.5	1.771	25.5	1.757	25.5	1.821	25.5	1.778	25.5	1.788	24.7	1.846	25.4	1.827	25.6
1.786	26	1.799	25.4	1.771	25.5	1.773	26	1.772	25.5	1.784	25.8	1.778	25.8	1.772	25.5	1.797	25.5	1.812	25.5	1.828	25.5	1.845	25.5
1.754	25.9	1.76	25.6	1.764	25	1.809	25.5	1.716	25.6	1.804	25.7	1.791	25.7	1.741	25.6	1.749	25.6	1.758	25.5	1.806	25	1.815	25
1.753	25.5	1.783	25.3	1.778	25	1.825	25.6	1.757	25.9	1.814	25.3	1.708	25.3	1.814	25.9	1.757	25.9	1.8	25.6	1.789	25.3	1.796	25.3
1.783	25.6	1.809	25.2	1.809	24.8	1.769	25.7	1.778	25.3	1.751	25.5	1.802	25.5	1.751	25.3	1.778	25.3	1.752	25.6	1.826	25.6	1.759	25.2
1.788	26.1	1.762	24.9	1.79	25	1.826	25.4	1.791	25.8	1.775	25.6	1.764	25.6	1.775	25.8	1.791	25.8	1.792	25.6	1.815	25.7	1.823	25.5
1.787	25.6	1.841	25.5	1.773	25.5	1.805	25.6	1.708	25.5	1.757	25.7	1.725	25.7	1.757	25.5	1.708	25.5	1.794	25.8	1.853	25.6	1.798	24.9
1.762	25.7	1.766	25.6	1.763	25	1.769	25.6	1.802	25.3	1.8	25.1	1.8	25.1	1.8	25.3	1.802	25.3	1.841	25.1	1.826	25.8	1.789	25.4
1.752	24	1.775	25.7	1.744	25.2	1.798	25.6	1.764	25.7	1.741	25.7	1.741	25.7	1.741	25.7	1.764	25.7	1.814	25.3	1.839	25.9	1.815	25
1.718	25.4	1.775	25.7	1.765	24.5	1.817	25.3	1.824	26	1.804	25.1	1.804	25.1	1.804	26	1.824	26	1.751	25.3	1.811	25.1	1.825	25.9
1.756	25.5	1.784	25.9	1.774	25.1	1.802	25.7	1.765	25.5	1.771	25.3	1.806	25.3	1.772	25.5	1.765	25.5	1.813	25.4	1.838	25.6	1.775	24.6
1.77	25.48	1.79	25.42	1.78	25.14	1.79	25.58	1.78	25.48	1.79	25.30	1.78	25.30	1.78	25.48	1.77	25.48	1.79	25.37	1.82	25.44	1.81	25.37
1.814	26.1	1.841	25.9	1.827	25.6	1.826	26	1.824	26	1.827	25.8	1.821	25.8	1.841	26	1.824	26	1.841	25.8	1.862	25.9	1.85	25.9
1.718	24	1.76	24.9	1.744	24.5	1.753	25.3	1.708	24.4	1.741	24.5	1.708	24.5	1.741	24.4	1.708	24.4	1.75	24.7	1.773	24.4	1.759	24.6
1.78	25.50	1.79	25.45	1.78	25.00	1.79	25.60	1.78	25.50	1.79	25.30	1.78	25.30	1.78	25.50	1.76	25.50	1.79	25.45	1.83	25.50	1.81	25.45
0.023	0.436	0.022	0.256	0.022	0.278	0.020	0.147	0.032	0.337	0.023	0.383	0.034	0.383	0.028	0.337	0.026	0.337	0.025	0.333	0.023	0.345	0.023	0.310
95	0	100	0	95	0	100	0	90	0	95	0	80	0	90	0	85	0	100	0	90	0	100	0
20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
0	20	0	20	0	20	0	20	0	20	0	20	0	20	0	20	0	20	0	20	2	20	0	20
1	0	0	0	1	0	0	0	2	0	1	0	4	0	2	0	3	0	0	0	0	0	0	0

ANEXO C

LISTA DE ESPECIFICICACIONES DE LOS INSERTOS

> LISTA DE INSERTOS DE LA LINEA "A"

			LINE	A-A				
FORMATO	MATRICULA	Ø MOLDE	ALT. MOLDE	NUM. DE ORIFICIOS MOLDE	INSERTO MAYOR Ø	INSERTO MENOR Ø	ALT. INSERT O	FABRICANTE
CODO CHICO	96211-91210	400	90	100	23.94	22.92	12.3	х
CODO RAYADO	8090751	400	90	278	12.86	11.37	16.83	Х
CODO MEDIANO	96212-96213	400	90	100	12.75	11.36	17.94	х
CARACOL CHICO	96208-96209	400	90	173	18.01	16.51	10.98	х
CARACOL MEDINO	89750-89751	400	90	28	44.77	42.85	13.49	BRAIBANTI
CARACOL MDIANO LISO	110313-110344	400	90	74	28.09	26.44	23.94	Х
FIDEO CORTO	117001	400	90	55	33.18	31.05	12.9	Х
FIDEO CORTO MEDIANO	560902630- 560902629	350	90	41	33.16	30.88	12.39	Х
PLUMA CHICA	98390-98391	400	90	127	18.03	16.45	9.99	Х
PLUMA GRANDE	98389-98388	400	90	127	17.87	16.45	20.32	Х
ESTRELLA	96214-96215	400	90	55	32.7	30.81	23.89	MONTONI
ESTRELLA CHICA	96217-96216	400	90	64	30.01	28.51	19.6	Х
LENTEJA	98382-98383	400	90	63	29.96	28.35	19.96	X
LETRA	96218-96219	400	90	374	10	8.91	6.5	X
PEPITA	98386-98387	400	90	63	29.96	28.46	19.96	X
PESCADITO	98380-98381	400	90	196	15.74	14.45	24.82	X
MUNICION	2063333- 2052922	400-350	90-70	80-90	22.91	20.88	9.77	Х

> LISTA DE INSERTOS DE LA LINEA "B"

			LIN	IEA-B				
FORMATO	MATRICULA	ANCH. MOLDE	ALT. MOLDE	NUM. DE ORIFICOS MOLDE	INSERTO MAYOR Ø	ORIFICIOS POR INSERTO	ALT. INSERTO	FABRICANTE
SPAGHETTI	931813	1.23	70	348	16.84	10	12.79	Х
SPAGHETTI	931814	1.23	70	368	16.93	12	13.27	LANDUCCIRSL
TALLARIN LARGO	2040547	1.23	70	704	11.83	2	19.71	LANDUCCIRSL
LINGUINI	931815	1.23	70	364	16.85	8	12.87	LANDUCCIRSL
MOLDE DE PURGA	901030-901030	1.23	70	644	N/A	N/A	N/A	BRAIBANTI
MOLDE DE PURGA	911878-911878	1.25	48	644	N/A	N/A	N/A	LANDUCCIRSL
PREMOLDES	2000875-2000875	1.25	48	548	N/A	N/A	N/A	Х
PREMOLDES	X	1.25	48	548	N/A	N/A	N/A	Х

> LISTA DE INSERTOS DE LA LINEA "C"

			LI	NEA-C					
FORMATO	MATRICULA	Ø MOLDE	ALT. MOLDE	NUM. DE ORIFICIOS EN EL MOLDE	INSERTO MAYOR Ø	INSERTO MENOR Ø	ORIFICIO EN INSERTO	ALTURA DEL INSERTO	FABRIC ANTE
FIDEO CAMBRAY	871279	300	55	165	7.3	N/A	7	6.3	LANDU CCIRSL
FIDEO GRUESO	119684	300	55	146	9.83	N/A	4	7.96	Х
FIDEO DELGADO	2071516-2071517	300	55	130	9.9	N/A	4	7	LANDU CCIRSL
CABELLO ANGEL	866272-860273	300	77	192	6.17	N/A	6	6.35	LANDU CCIRSL
TALLARIN CADEJO	2063687-2063688	300	77	27	N/A	N/A	N/A	N/A	Х

> LISTA DE INSERTOS DE LA LINEA "D"

LINEA –D										
FORMATO	MATRICULA	Ø MOLDE	ALT. MOLDE	NUM. DE ORIFICIOS MOLDE	INSERTO MAYOR Ø	INSERTO MENOR Ø	ALT. INSERTO	ORIFICIO DE INSERTO	FABRICANTE	
CODO MEDIANO	122521	5.2	1.1	Х	29.97	28.42	13.77	5	MONTONI	
CODO RAYADO	122565	5.2	1.1	532	12.81	11.42	17.99	1	MONTONI	
CODO CHICO	2141020-2141021	5.2	1.1	193	х	х	х	Х	Х	
CARACOL MEDIANO	122519-122519	5.2	1.1	92	33.98	31.95	13.44	2	MONTONI	
FIDEO CORTO	122520	5.2	1.1	92	33.2	30.8	12.1	90	MONTONI	
PLUMA GRANDE	122563	5.2	1.1	397	15.86	14.89	23.96	1	MONTONI	
PLUMA CHICA	2141022-2141023	5.2	1.1	397	14.73	13.33	10.95	1	MONTONI	
LETRA	109600-109601	5.2	1.1	878	10.5	9.4	8.88	1	LANDUCCISRL	
PEPITA	109602-109603	5.2	1.1	116	30.16	28.4	19.95	7	LANDUCCISRL	
PESCADITO	109606-109607	5.2	1.1	340	15.69	14.56	24.94	1	LANDUCCISRL	
ESTRELLA	109596-109597	5.2	1.1	92	Х	Х	Х	7	MONTONI	
SERPENTINA	2042928(PUEBLA)	5.2	1.1	170	Х	Х	1	1	LANDUCCISRL	
SERPENTINA	2071740- 2071741(IRAPUATO)	460	90	170	Х	Х	1	1	LANDUCCISRL	
CARACOL MEDIANO	109605	460	90	X	Х	Х	Х	Х	Х	